首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Quantum chemical calculations of energies, geometries and vibrational wavenumbers of 2,4‐difluorophenol (2,4‐DFP) were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6‐311G(d,p) as basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with related molecules. The best level of theory in order to reproduce the experimental wavenumbers is the B3LYP method with the 6‐311G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of 2,4‐DFP is also reported. The entropy of the title compound was also performed at HF/6‐311G(d,p) and B3LYP/6‐311G(d,p) levels of theory. The isotropic chemical shift computed by 1H, 13C NMR analyses also shows good agreement with experimental observations. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule have been constructed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In this study 2‐(2′‐furyl)‐4,5‐1H‐dihydroimidazole (1) was prepared and then characterized by infrared, Raman, and multidimensional nuclear magnetic resonance (NMR) spectroscopies. The crystal and molecular structures of 1 were determined by X‐ray diffraction methods. The density functional theory (DFT) and second‐order Møller–Plesset theory (MP2) with Pople's basis set show that there are two conformers for the title molecule that have been theoretically determined in the gas phase, and that only one of them, conformer I, is present in the solid phase. NMR spectra observed for 1 were successfully compared with the calculated chemical shifts at the B3LYP/6‐311++G** level theorized for this conformer. The harmonic vibrational frequencies for the optimized geometry of the latter conformer were calculated at the B3LYP/6‐311++G** level in the approximation of the isolated molecule. For a complete assignment of the IR and Raman spectra in the solid phase of 1 , DFT calculations were combined with Pulay´s scaled quantum mechanics force field (SQMFF) methodology to fit the theoretical frequency values to the experimental ones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The influence of lithium, sodium, potassium, rubidium, and cesium on the electronic system of the 4‐nitrobenzoic acid molecule was studied. The vibrational (FT‐IR, FT‐Raman) and NMR (1H and 13C) spectra for 4‐nitrobenzoic acid salts of alkali metals were recorded. The assignment of vibrational spectra was done. Characteristic shifts of band wavenumbers and change in band intensities along the metal series were observed. Good correlation between the wavenumbers of the vibrational bands in the IR and Raman spectra for 4‐nitrobenzoates and ionic potential, electronegativity, atomic mass, and affinity of metals were found. The chemical shifts of protons and carbons (1H, 13C NMR) in the series of studied alkali metal 4‐nitrobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by HF, B3PW91, B3LYP methods using 6‐311++G** basis set. The theoretical IR, Raman, and NMR spectra were obtained. The theoretical vibrational spectra were interpreted by means of potential energy distributions (PEDs) using VEDA 3 program. The calculated parameters were compared to experimental characteristic of studied compounds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The experimental and theoretical vibrational spectra of 2‐fluorophenylboronic acid (2fpba) were studied. The Fourier transform Raman and Fourier transform infrared spectra of the 2fpba molecule were recorded in the solid phase. The structural and spectroscopic analysis of the molecule was carried out by using Hartree‐Fock and density functional harmonic calculations. For the title molecule, only one form was found to be the most stable structure, by using B3LYP level with the 6‐31++G(d,p) basis set. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution (TED). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the 2fpba molecule were calculated using the Gauge‐Invariant‐ atomic orbital (GIAO) method in DMSO solution using IEF‐PCM model and compared with the experimental data. Finally, geometric parameters, vibrational wavenumbers and chemical shifts were compared with available experimental data of the molecule. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Reactions of 2‐nitro‐, 4‐nitro‐ and 2,4‐dinitrophenylglycidyl ethers with bicyclo[2.2.1]hept‐5‐ene‐endo‐2‐ylmethylamine in isopropanol have been studied. The mixtures of products were chromatographed on silica gel and eluted with ether or ether/2‐propanol (1:1), the structures of individual products have been confirmed by IR spectra, NMR 1H, 13C spectra, using experiments that involve homonuclear and heteronuclear scalar coupling interactions (COSY, TOCSY, HMQC, HMBC), and mass spectrometry. Amino alcohols as the major products of regioselective aminolysis of epoxides (according to the Krasusky rule) have been obtained. The minor products were the compounds with two hydroxyalkyl fragments at the nitrogen atom. In case of dinitrophenylglycidyl ether, it was the minor product of aryl nucleophilic substitution (SNAr). The abnormal course of aminolysis has been confirmed by the results of quantum‐chemical calculations of activation barries and Free Gibbs energies of the competitive reactions of epoxides (at the B3LYP/6‐311 + G(d,p) level of theory). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The first conformational analysis of 3‐silathiane and its C‐substituted derivatives, namely, 3,3‐dimethyl‐3‐silathiane 1 , 2,3,3‐trimethyl‐3‐silathiane 2 , and 2‐trimethylsilyl‐3,3‐dimethyl‐3‐silathiane 3 was performed by using dynamic NMR spectroscopy and B3LYP/6‐311G(d,p) quantum chemical calculations. From coalescence temperatures, ring inversion barriers ΔG for 1 and 2 were estimated to be 6.3 and 6.8 kcal/mol, respectively. These values are considerably lower than that of thiacyclohexane (9.4 kcal/mol) but slightly higher than the one of 1,1‐dimethylsilacyclohexane (5.5 kcal/mol). The conformational free energy for the methyl group in 2 (?ΔG° = 0.35 kcal/mol) derived from low‐temperature 13C NMR data is fairly consistent with the calculated value. For compound 2 , theoretical calculations give ΔE value close to zero for the equilibrium between the 2 ‐Meax and 2 ‐Meeq conformers. The calculated equatorial preference of the trimethylsilyl group in 3 is much more pronounced (?ΔG° = 1.8 kcal/mol) and the predominance of the 3 ‐SiMe3 eq conformer at room temperature was confirmed by the simulated 1H NMR and 2D NOESY spectra. The effect of the 2‐substituent on the structural parameters of 2 and 3 is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, the experimental and theoretical UV, NMR and vibrational spectra of 2-chloro-6-methylaniline (2-Cl-6-MA, C7H8NCl) were studied. The ultraviolet absorption spectra of compound that dissolved in ethanol were examined in the range of 200–400 nm. The 1H, 13C and DEPT NMR spectra of the compound were recorded. FT-IR and FT-Raman spectra of 2-Cl-6-MA in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies were found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. Comparison of the calculated NMR chemical shifts and absorption wavelengths with the experimental values revealed that DFT method produces good results.  相似文献   

9.
吉非替尼是第一个被批准上市用于治疗晚期非小细胞肺癌(NSCLC)的药物.该文采用5种密度泛函理论(DFT)方法B3LYP,BHandHLYP,M06-2X,CAM-B3LYP和LC-wPBE在6-311++G**水平上对吉非替尼分子的红外、紫外可见光谱及核磁共振谱进行了计算,并通过比较计算值和实验值得到最佳的计算条件.研究结果表明,CAM-B3LYP和M06-2X是最佳的用于描述吉非替尼分子红外光谱的方法;B3LYP//GIAO(Gauge-Including Atomic Orbital)方法预测得到的吉非替尼在(CH3)2SO中的1H NMR与实验值最为接近,用于预测13C NMR的最佳方法是B3LYP//CSGT(Circularty Sgmmetrical Gabor Transform).  相似文献   

10.
We report a preparation of new 6‐substituted‐5,6‐dihydrobenzo[c]phenanthridines by the reaction of azoles with quaternary benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine. The prepared compounds have been characterized by NMR spectroscopy, mass spectrometry, and single‐crystal X‐ray diffraction. Conformational behaviors of carbazole derivatives in solution have been investigated by low‐temperature NMR experiments. Barriers to rotation around newly formed C6–N bonds were determined to be 12–13 kcal/mol. Quantum chemical calculations have been used to reproduce the experimental observations. Large structural effects on several 1H NMR resonances were observed experimentally, analyzed by Density Functional Theory (DFT) calculations at B3LYP/6‐311+G(d,p)/PCM level, and interpreted by ring‐current effects of the benzo[c]phenanthridine and carbazole units. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In the present study, structural properties of Mono-(2-Pyridyl) Hydrazone were studied extensively utilizing density functional theory (DFT) employing B3LYP exchange correlation. The Fourier transform infrared (solid phase) was recorded. The vibrational frequencies in the ground state were calculated by using density functional method (B3LYP) with 6-31G* and 6-311G** as basis sets. The spectral studies revealed that the title compound exists in Keto form. Spectral techniques that we employed include 1H and 13C NMR, electronic, thermal techniques. Correlation between experimental chemical shifts and GIAO/B3LYP/6-311G**-calculated isotropic shielding constants, δexp = a + bσcalc, are reported. Good linear regressions between experimental and theoretical results for 1H and 13C were obtained.  相似文献   

12.
Experimental vibrational spectroscopic studies and density functional theory (DFT) calculations of the di‐amino acid peptide derivatives α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu have been undertaken. Raman and infrared spectra have been recorded for samples in the solid state. DFT simulations were conducted using the B3‐LYP correlation functional and the cc‐pVDZ basis set to determine energy minimized/geometry optimized structures (based on a single isolated molecule in the gaseous state). Normal coordinate calculations have provided vibrational assignments for fundamental modes, including their potential energy distributions. Significant differences are observed between α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu both in the computed structures and in the vibrational spectra. The combination of experimental and calculated spectra provide an insight into the structural and vibrational spectroscopic properties of di‐amino acid peptide derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In order to understand the nature of the interactions of biologically important ligands, it is necessary to carry out the physico‐chemical studies of these compounds with their biological targets (e.g., receptors in the cell or important cell components). Results of this study make it possible to predict some properties of a molecule, such as its reactivity, durability of complex compounds, and kinship to enzymes. In this paper the effect of alkali metal cations (Li, Na, K, Rb, and Cs) on the electronic structure of m‐methoxybenzoic acid (m‐anisic acid) was studied. The experimental IR (in solid state and solution), Raman, UV (in solid state and solution), 1H, and 13C NMR spectra of m‐methoxybenzoic acid, and its salts were registered, assigned, and analyzed. Some of the obtained results were compared with published data for o‐anisic acid and o‐anisates. The structures of anisic acid and Li, Na, and K m‐anisates were optimized at the B3LYP/6‐311++G** level. The IR, 1H, and 13C NMR spectra and NPA, ChelpG, and MK atomic charges were calculated. The change of metal along with the series: Li → Na → K → Rb → Cs caused: (1) the change in the electronic charge distribution in anisate anion that is seen via the occurrence of the systematic shifts of several bands in the experimental and theoretical IR and Raman spectra of anisates; (2) systematic 1H and 13C NMR chemical shifts; (3) hypsochromic shifts in UV spectra of salts as compared to ligands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Proton coupled and uncoupled 13C, 1H, DEPT, COSY and HETCOR NMR spectra of 4-Phenylpyridine (4-Phpy) have been reported for the first time except for its 1H NMR spectrum. In order to provide a precise structural elucidation for carbon atoms those have very close chemical shifts to each other, the magnitude of nJCH (n=1,2,3) coupling constants of 4-Phpy (C11H9N) have also been investigated. 13C, 1H NMR chemical shifts and 1-3JCH coupling constants of 4-Phpy have been calculated by means of B3LYP density functional method with 6-311++G(d,p) basis set. Moreover, the optimized parameters (bond lengths, bond and torsion angles) of 4-Phpy have been calculated with B3LYP at 6-31G(d) level in methanol (ε=32.63). Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties.  相似文献   

15.
1H NMR spectra of epoxy-fused cyclopentane derivatives have been computationally investigated with density functional calculations in order to unravel the shielding effect of the epoxy ring on the 1H NMR chemical shifts of N-substituted epoxy-fused cyclopentane-3, 5-diol derivatives. Both 1H NMR chemical shifts and spin–spin coupling constants have been calculated with the WP04/cc-pVTZ level of theory in solution. The WP04/cc-pVTZ// B3LYP/6-31+G(d) methodology has been found to reproduce the best experimental results on epoxy-fused cyclopentane derivatives. This study is expected to lead experimentalists in their endeavour to characterize epoxy-fused cyclic systems with ease.  相似文献   

16.
The effects of substituents on the stability of 3‐substituted(X) bicyclo[1.1.1]pent‐1‐yl cations (3) and 4‐substituted(X) bicyclo[2.2.1]hept‐1‐yl cations (4), for a set of substituents (X = H, NO2, CN, NC, CF3, CHO, COOH , F, Cl, HO, NH2, CH3, SiH3, Si(CH3)3, Li, O?, and NH3+) covering a wide range of electronic substituent effects were calculated using the DFT theoretical model at the B3LYP/6‐311 + G(2d,p) and B3LYP/6‐31 + G (d) levels of theory, respectively. Linear regression analysis was employed to explore the relationship between the calculated relative hydride affinities (ΔE, kcal/mol) of the appropriate isodesmic reactions for 3/4 and polar field/group electronegativity substituent constants (σF and σχ, respectively). The analysis reveals that the ΔE values for both systems are best described by a combination of both substituent constants. The result highlights the importance of the σχ dependency of charge delocalization in these systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In the present work, the dynamic 1H NMR effects were investigated at variable temperatures within a particular phosphorus ylide involving a 2‐benzoxazolinone around the carbon–carbon single bond and also partial carbon–carbon double bond in two Z‐ and E‐rotational isomers. Activation and kinetic parameters including ΔH, ΔG, ΔS and Ea were determined in accord with the dynamic 1H NMR data for three rotational processes. In addition, theoretical studies based upon rotation around the same bonds were investigated using ab initio and DFT methods at the HF/6‐31G(d,p) and B3LYP/6‐31G(d,p) levels of theory. Theoretical activation and kinetic parameters including ΔH, ΔG, ΔS and Ea were calculated at 298 K and experimental temperatures for five rotational processes. These results (experimental and theoretical), taken together, indicate that the rotational energy barrier around the C = C double bond was considerably high and the observation of the two rotational isomers was impossible (seen as a single isomer) at the high temperatures, in this case rotation around the C = C bond was too fast on the NMR time scale. When the temperature was relatively low, the rate of rotation was sufficiently slow; therefore, observation of the two Z‐ and E‐isomers was possible. In addition, calculations at the HF/6‐31G(d,p) level of theory showed very favorable results in agreement with the experimental data on rotation around the C = C bond. While, B3LYP level using the 6‐31G(d,p) basis set was provided the reasonable data for the restricted rotations around the C–C and C–N single bond. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The pure rotational spectrum of β-propiolactone (c-C2H4COO) has been recorded between 7 and 21 GHz using a pulsed jet Fourier transform microwave spectrometer. The resulting ground state spectroscopic constants guided the analysis of the rotationally-resolved infrared spectra of two bands that were collected using the far infrared beamline at the Canadian Light Source synchrotron. The observed modes correspond to motions best described as ring deformation (ν12) at 747.2 cm−1 and CO ring stretching (ν8) at 1095.4 cm−1. A global fit of 4430 a- and b-type transitions from the microwave spectrum and the two infrared bands provided an accurate set of ground state and excited state spectroscopic parameters. To complement the experimental results, the harmonic and anharmonic vibrational frequencies of all 21 infrared active modes of β-propiolactone have been calculated using the DFT B3LYP method (6-311+G(d,p), 6-311++G(2d,3p) basis sets).  相似文献   

19.
This study reports the structural characterization of a disulfonimide derivative, 4-methyl-N-(4-methylphenylsulfonyl)-N-phenylbenzenesulfonamide (MPBSA), using spectroscopic and quantum chemical methods. The molecule was characterized with FT-IR, 1H 13C NMR and UV-Vis spectroscopies. Quantum chemical calculations of molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO) 1H and 13C-NMR chemical shifts of the compound were carried out by using density functional method (DFT) at B3LYP/6?311++G(d,p) level of theory. Electronic absorption spectra of the compound have been computed using the time-dependent density functional theory (TD-DFT) method at the same level. A satisfactory consistency between the experimental and theoretical findings was obtained. The antimicrobial activity screening of the compound was performed on some bacteria and fungus species using microdilution method. The results showed that the title molecule have noteworthy antibacterial and antifungal activities.  相似文献   

20.
1H and 13C NMR chemical shifts were measured for a set of six isomers—the cis and trans 2‐, 3‐, and 4‐methylcyclohexanols. 1H and 13C NMR chemical shifts were computed at the B3LYP, WP04, WC04, and PBE1 density functional levels for the same compounds, taking into account the Boltzmann distribution among conformational isomers (chair–chair forms and hydroxyl rotamers). The experimental versus computed chemical shift values for proton and carbon were compared and evaluated (using linear correlation (r2), total absolute error (|Δδ|T), and mean unsigned error (MUE) criteria) with respect to the relative ability of each method to distinguish between cis and trans stereoisomers for each of the three constitutional isomers. For 13C shift data, results from the B3LYP and PBE1 density functionals were not sufficiently accurate to distinguish all three pairs of stereoisomers, while results using the WC04 functional did do so. For 1H shift data, each of the WP04, B3LYP, and PBE1 methods was sufficiently accurate to make the proper stereochemical distinction for each of the three pairs. Applying a linear correction to the computed data improved both the absolute accuracy and the degree of discrimination for most of the methods. The nature of the cavity definition used for continuum solvation had little effect. Overall, use of proton chemical shift data was more discriminating than use of carbon data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号