首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Semi‐interpenetrating polymer networks (semi‐IPNs) were prepared by reactions of 2,4‐tolylene diisocyanate (TDI) and hydroxy‐terminated 4‐arm star‐shaped l ‐lactide oligomers (H4LAOn's) with the degrees of polymerization of lactate unit per one arm, n = 3, 5, and 10 in the presence of poly(ε‐caprolactone) (PCL). Morphologies, thermal, and mechanical properties of the TDI‐bridged H4LAOn (TH4LAOn)/PCL semi‐IPNs were evaluated by comparing with those of poly(l ‐lactide) (PLA)/PCL blends. Compatibility between the two components of the TH4LAOn/PCL semi‐IPN with a PCL content not more than 50 wt % was much better than those of the PLA/PCL blends with the same PCL content. All the TH4LAOn networks were substantially amorphous and their tan δ peak or glass transition temperatures increased with decreasing n value. Most of the semi‐IPNs did not show clear glass transition temperature related to both the components. Tensile toughness and elongation at break for all the TH4LAOn/PCL semi‐IPNs were much higher than those for the PLA/PCL blends with the same PCL content. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1420–1428  相似文献   

2.
Polyoxazolidones having fluorenyl group were synthesized by polyaddition of 9,9‐diglycidyl fluorene with various diisocyanates. The polymer from 9,9‐diglycidyl fluorene and methylenediphenyl 4,4′‐diisocyanate was afforded in high yield although polydispersity of the polymer was found relatively broad. The IR spectrum of the obtained polymer showed two absorption in carbonyl region. One of them was assigned to the expected oxazolidone, while the other at 1710 cm?1 appeared due to a carbonyl group of the isocyanurate moieties produced by cyclotrimerization of isocyanate. It is assumed that the cyclotrimerization would cause the broad polydispersity caused by the branched structure formed by isocyanurate. The polymers obtained with three kinds of diisocyanates (methylenediphenyl 4,4'‐diisocyanate, 1,6‐hexamethylene diisocyanate, 1,4‐phenylene diisocyanate) showed high thermal stability, as their Td10 was depended on the structure of diisocyanate. All polymers had high transparency in a visible region. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1755–1760  相似文献   

3.
Star polymers (SPs) containing a hyperbranched poly(ethylene imine) (PEI; number‐average molecular weight = 10,000) core and polylactide arms were synthesized via the ring‐opening polymerization of lactide. PEI was used as a multifunctional macroinitiator for the ring‐opening polymerization of lactide. Different lactide monomer/amino‐functional group (LA/NHn; n = 1 or 2) ratios were used for preparing SPs with different molecular weights. SPs were able to encapsulate small guest molecules such as Rose Bengal; they also transported small, hydrophilic molecules from water to the organic phase. The transport capacity of all the nanocarriers depended on the LA/NHn ratio used for synthesizing the SPs. Nanocarriers with a higher LA/NHn ratio had higher transport capacities. The size of all the nanocarriers depended on the type of solvent. In chloroform, these nanoparticles had several sizes that were related to the self‐assembly of these nanocarriers, but in acetone, they were monodisperse, and their size was smaller than that in chloroform. Also, the transport of polar dyes from water to the chloroform phase was possible. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5740–5749, 2006  相似文献   

4.
A series of aluminum dimethyl complexes 1 – 6 bearing N‐[2‐(pyrrolidinyl)benzyl]anilido ligands were synthesized and well characterized. The molecular structure of complex 1 determined by an X‐ray diffraction study indicates the bidentate chelating mode of the pyrrolidinyl‐anilido ligand. In the absence of a coinitiator, these complexes exhibited excellent control toward the polymerizations of ε‐caprolactone and rac‐lactide, affording polyesters with quite narrow molecular weight distributions (Mw/Mn = 1.04–1.26). The end group analysis of ε?CL oligomer via 1H NMR and ESI‐TOF MS methods gave strong support to the hypothesis that the polymerization catalyzed by these aluminum complexes proceeds via a coordination‐insertion mechanism involving a unique Al? N (amido) bond initiation. Via 1H NMR scale oligomerization studies, it is suggested that the insertion of the first lactide monomer into Al? N bond of the complex is much easier than the insertion of lactide monomer into the newly formed Al? O (lactate) bond and might also be easier than the insertion of the first ε?CL monomer into Al? N bond. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3096–3106  相似文献   

5.
Novel poly(l ‐lactide) (PLLA)/poly(d ‐lactide) (PDLA)/poly(tetrahydrofuran) (PTHF) multiblock copolymers with designed molecular structure were synthesized by a two‐stage procedure. Well‐defined PDLA‐PLLA‐PTHF‐PLLA‐PDLA pentablock copolymers were prepared by sequential ring opening polymerization of l ‐ and d ‐lactides starting from PTHF glycol, with the length of the (equimolar) PLLA and PDLA blocks being varied. Then, these dihydroxyl‐terminated pentamers were transformed into multiblock copolymers by melt chain‐extension with hexamethylene diisocyanate–being the first time that the coupling of pentablock units is reported. The successful formation of macromolecular chains with a multiblock and well‐defined architecture was demonstrated by 1H NMR spectroscopy. The thermal properties and structuring of the resulting materials were investigated by means of DSC and WAXD measurements and DMA analysis. Stereocomplexation was found to be promoted during solution and melt crystallization. This approach affords materials combining the high rigidity and strength (other than improved thermal resistance) of the hard stereocomplex crystallites with the flexibility imparted by the soft block, whereby their properties can be finely tailored through the composition of the basic pentablock units without limitations on the final molecular weight. The adopted reaction conditions make this process highly appealing in view of the possibility to perform it in extruder. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3269–3282  相似文献   

6.
Novel polyesterurethane/poly(ethylene glycol) dimethacrylate (PEGDMA) interpenetrating networks (IPNs) with good shape‐memory properties were synthesized using solvent casting method. The star‐shaped oligo[(rac‐lactide)‐co‐glycolide] was coupled with isophorone diisocyanate to form a polyesterurethane network (PULG), and PEGDMA was photopolymerized to form another polyetheracrylate network. IPNs were transparent and gel content exceeded 92%. The values of strain fixity rate and strain recovery rate were above 93%. PULG and PEGDMA networks in IPNs were amorphous and did not show any characteristic diffraction peaks in X‐ray diffraction spectra. Only one glass transition temperature (Tg) of the IPNs between Tg of PEGDMA and PULG was observed, which was proportional to PEGDMA content. PULG and PEGDMA networks were miscible when PEGDMA content was below 50 wt %. The hydrophilicity, transition temperatures, and mechanical properties of IPNs could be conveniently adjusted through variation of network compositions to match the promising potential clinical or medical applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 768–775, 2007  相似文献   

7.
The new linear thiopolyesterdiols (PEs) containing sulfur in the main chain were synthesized by melt polycondensation of newly obtained benzophenone‐4,4′‐bis(methylthioacetic acid) with excess of 1,4‐butanediol, 1,5‐pentanediol, and 1,6‐hexanediol. All these PEs (M n of 2000–2600) were converted to thiopoly(ester‐urethane)s (PEUs) by polyaddition reaction with hexamethylene diisocyanate or 4,4′‐diphenylmethane diisocyanate, which was carried out in melt at the ratio of NCO/OH = 1. The resulting thermoplastic PEUs were amorphous and elastomeric, with elongation at break ranging from 630 to 1200%. The polymers were characterized by Fourier transform infrared, 1H NMR, thermogravimetric analysis, differential scanning calorimetry, and in the case of PEUs, Shore A/D hardness and tensile properties. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3977–3983, 2000  相似文献   

8.
The polymerization of [S]‐lactide was accomplished using an initiating system comprising an alkyl zinc complex and a series of well defined carbohydrate co‐initiators derived from D ‐glucose, D ‐xylose, and 2‐deoxy‐D ‐ribose. The monosaccharide co‐initiators were aldonate esters and pyranoses, they were all prepared in high yield and had only a single alcohol co‐initiating group; the remaining carbohydrate hydroxyl functionalities were protected as acetyl, benzyl ether and isopropylidene acetal groups. The polymerizations were all well controlled, illustrated by the linear increase in poly(S‐lactide) Mn with percentage conversion of lactide, the increase in poly(S‐lactide) Mn with [lactide]0‐[lactide]t/[co‐initiator] and the narrow polydispersity indices of the polylactides. Thus, the novel initiating systems were used to produce poly(S‐lactides) end functionalized with a variety of different aldonate ester and pyranose groups and with degrees of polymerization from 10 to 250. The polyesters were fully characterized, including by NMR spectroscopy, size exclusion chromatography (SEC), matrix‐assisted laser deposorption/ionization (MALDI) mass spectrometry and by static water contact angle measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4350–4362, 2008  相似文献   

9.
A series of biodegradable, thermoplastic polyurethane elastomers poly(?‐caprolactone‐co‐lactide(polyurethane [PCLA–PU] were synthesized from a random copolymer of L ‐lactide (LA) and ?‐caprolactone (CL), hexamethylene diisocyanate, and 1,4‐butanediol. The effects of the LA/CL monomer ratio and hard‐segment content on the thermal and mechanical properties of PCLA–PUs were investigated. Gel permeation chromatography, IR, 13C NMR, and X‐ray diffraction were used to confirm the formation and structure of PCLA–PUs. Through differential scanning calorimetry, tensile testing, and tensile‐recovery testing, their thermal and mechanical properties were characterized. Their glass‐transition temperatures were below ?8 °C, and their soft domains became amorphous as the LA content increased. They displayed excellent mechanical properties, such as a tensile strength as high as 38 MPa, a tensile modulus as low as 10 MPa, and an elongation at break of 1300%. Therefore, they could find applications in biomedical fields, such as soft‐tissue engineering and artificial skin. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5505–5512, 2006  相似文献   

10.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   

11.
The ring‐opening polymerizations (ROPs) of εcaprolactone (ε‐CL) and L ‐lactide (LLA) have been studied using the organocatalysts of diphenyl phosphate (DPP) and 4‐dimethylaminopyridine (DMAP). The “dual activation” property of DPP and the “bifunctional activation” property of DPP/DMAP were confirmed by the NMR measurement for ε‐CL and its chain‐end model of poly(ε‐caprolactone) and for LLA and its chain‐end model of poly(L ‐lactide) (PLLA), respectively. The molar ratio of DPP/DMAP was optimized as 1/2 for the ROP of LLA leading to the well‐defined PLLA, such as the molecular weight determined from 1H NMR measurement of 19,200 g mol?1 and the narrow polydispersity of 1.10. Additionally, functional initiators were utilized for producing the end‐functionalized PLLAs. The DPP‐catalyzed ROPs of ε‐CL and its analogue cyclic monomers and then the DPP/DMAP‐catalyzed ROP of LLA produced block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1047–1054  相似文献   

12.
The H‐shaped copolymers, [poly(L ‐lactide)]2polystyrene [poly(L ‐lactide)]2, [(PLLA)2PSt(PLLA)2] have been synthesized by combination of atom transfer radical polymerization (ATRP) with cationic ring‐opening polymerization (CROP). The first step of the synthesis is ATRP of St using α,α′‐dibromo‐p‐xylene/CuBr/2,2′‐bipyridine as initiating system, and then the PSt with two bromine groups at both chain ends (Br–PSt–Br) were transformed to four terminal hydroxyl groups via the reaction of Br–PSt–Br with diethanolamine in N,N‐dimethylformamide. The H‐shaped copolymers were produced by CROP of LLA, using PSt with four terminal hydroxyl groups as macroinitiator and Sn(Oct)2 as catalyst. The copolymers obtained were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2794–2801, 2006  相似文献   

13.
Norbornene macromonomers 2 and 3 bearing 10‐ and 20‐mers of lactide were synthesized by ring‐opening polymerization of lactide using 5‐norbornene‐2, 3‐exo‐exo‐dimethanol as an initiator and DBU as a catalyst. Macromonomers 2 and 3 were copolymerized with amino acid derived norbornene monomer 1 , using the Grubbs 2nd generation ruthenium catalyst. The random and block copolymers with Mn's ranging from 28,000 to 180,000 were obtained almost quantitatively where the Mn's of the block copolymers were higher than those of the random ones. Three‐dimensional macroporous structure polymers with average pore size of 10 µm could be found in poly( 1 ) and the block co‐polymer of 1 and 2 or 1 and 3 at the high ratio of 1 . Meanwhile, poly( 2 ) and poly( 3 ) along with block and random copolymers with low ratio of 1 exhibit much larger pores in the range of 50–300 µm. The porosity increased with increase in the unit ratio of 1 . The compressive strength of the porous structure of poly( 2 ) and poly( 3 ) was improved by the copolymerization with 1 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1660–1670  相似文献   

14.
At first, formation of cycles in commercial poly(l ‐lactide)s is discussed and compared with benzyl alcohol‐initiated polymerizations performed in this work. This comparison was extended to polymerizations initiated with 4‐cyanophenol and pentafluorothiophenol which yielded cyclic polylactides via end‐biting. The initiator/catalyst ratio and the acidity of the initiator were found to be decisive for the extent of cyclization. Further polymerizations of l ‐lactide were performed with various diphenols as initiators/co‐catalysts. With most diphenols, cyclic polylactides were the main reaction products. Yet, only catechols yielded even‐numbered cycles as main reaction products, a result which proves that their combination with SnOct2 catalyzed a ring‐expansion polymerization (REP). The influence of temperature, time, co‐catalyst, and catalyst concentrations was studied. Four different transesterification reactions yielding cycles were identified. For the cyclic poly(l ‐lactide)s weight average molecular weights (Mw's) up to 120,000 were obtained, but 1H NMR end group analyses indicated that the extent of cyclization was slightly below 100%. The influence of various parameters like structure of initiator and catalyst and temperature on the formation of cyclic poly(l ‐lactide)s has been investigated. Depending on the chosen conditions, the course of the polymerization can be varied from a process yielding exclusively linear polylactides to mainly cyclic polylactides. Three different reaction pathways for cyclization reactions have been identified. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1915–1925  相似文献   

15.
The α‐diimine‐ligated Fe‐complex, BIAN‐Fe(C6H6) , was synthesized and evaluated for the polymerization of l ‐lactide. Characterization of BIAN‐Fe(C6H6) reveals that it is redox non‐innocent and suggests that it is an Fe(I) species bearing a radical‐anionic ligand. We will demonstrate that BIAN‐Fe(C6H6) is active for the ring‐opening polymerization of l lactide, and that polymer is produced with, or without, the use of an added external initiator. Interestingly, very high molecular weight polymers are produced in the absence of external initiator whereas polymer molecular weights that agree with theoretical calculations are produced in the presence of external initiator. To the best of our knowledge, BIAN‐Fe(C6H6) is the first Fe‐based α‐diimine catalyst reported to be active for the polymerization of l lactide. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2824–2830  相似文献   

16.
This article reports the synthesis and the properties of novel thermoplastic elastomers of A‐B‐A type triblock copolymer structure, where the hard segment A is poly(l ‐lactide) (PLLA) and the soft segment B is poly(ε‐caprolactone‐stat‐d ,l ‐lactide) (P(CL‐stat‐DLLA)). The P(CL‐stat‐DLLA) block with DLLA content of 30 mol % was applied because of its amorphous nature and low glass transition temperature (Tg = approximately ?40 °C). Successive polymerization of l ‐lactide afforded PLLA‐block‐P(CL‐stat‐DLLA)‐block‐PLLAs, which exhibited melting temperature (Tm = approximately 150 °C) for the crystalline PLLA segments and still low Tg (approximately ?30 °C) of the soft segments. The triblock copolymers showed very high elongation at break up to approximately 2800% and elastic properties. The corresponding d ‐triblock copolymers, PDLA‐block‐P(CL‐stat‐DLLA)‐block‐PDLAs (PDLA = poly(d ‐lactide)) were also prepared with the same procedure using d ‐lactide in place of l ‐lactide. When the PLLA‐block‐P(CL‐stat‐DLLA)‐block‐PLLA was blended with PDLA‐block‐P(CL‐stat‐DLLA)‐block‐PDLA, stereocomplex crystals were formed to enhance their Tm as well as tensile properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 489–495  相似文献   

17.
Biodegradable polyesters were synthesized via an emulsion polymerization in supercritical carbon dioxide (SC‐CO2). Copolymers of lactide and glycolide were synthesized in SC‐CO2 with stannous octoate as the ring‐opening catalyst and a fluorocarbon polymer surfactant as an emulsifying agent. The conversion of lactide and glycolide was monitored with respect to the reaction time and temperature with 1H NMR spectroscopy. The conversion of glycolide surpassed 99% within 72 h for an SC‐CO2 phase maintained at 200 bar and 70 °C. Under the same conditions, lactide conversion reached 65% after 72 h of polymerization. Unpolymerized monomer was removed after the reaction by extraction with an SC‐CO2 mobile phase. The molecular weights of all the copolymers were measured by gel permeation chromatography. Weight‐average molecular weights (Mw) ranged between 2500 and 30,200 g/mol and polydispersity indices ranged from 1.4 to 2.3 for polymerization times of 6 and 48 h, respectively. Although the molecular weight increased significantly during the first 48 h of reaction, there was no significant difference in the Mw for polymerization times of 48 and 72 h. Emulsion polymerization within the benign solvent SC‐CO2 demonstrated improved conversion and molecular weight versus polymers synthesized without surfactant. The emulsion polymerization of lactide and glycolide copolymers in SC‐CO2 is proposed as a novel production technique for high‐purity, biodegradable polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 562–570, 2001  相似文献   

18.
A series of bimetallic aluminum Schiff‐base complexes have been prepared and characterized. The complexes used as catalysts were applied in the lactide polymerization to test their activities and stereoselectivities. All polymerizations are living, as evidenced by the narrow polydispersities and the good fit between calculated and found number‐average molecular weights of the isolated polymers. Isotactic enriched polylactide was obtained by using these complexes. Kinetic studies indicated that the polymerizations are both first‐ordered with respect to lactide monomer and catalyst. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1344–1352  相似文献   

19.
Methylated and pegylated poly(lactide)‐block‐poly(ε‐caprolactone)‐block‐poly(lactide) copolymers, PLA–P(CL‐co‐CLCH3)–PLA and PLA–P(CL‐co‐CLPEG)–PLA, were prepared in three steps: combining the formation of carbanion‐bearing dihydroxylated‐PCL, the coupling of iodomethane or bromoacetylated α‐hydroxyl‐ω‐methoxy‐poly(ethylene glycol) onto the carbanionic PCL, and finally the ring opening polymerization of DL ‐lactide initiated by the preformed grafted diOH‐PCL copolymers. The resulting block copolymers exhibited lower crystallinity, melting temperature, and hydrophobicity with respect to the original PCL. Degradation of the grafted copolymers was investigated in the presence of Pseudomonas cepacia lipase and compared with that of the triblock copolymer precursor. It is shown that the presence of the grafted substituents affected the enzymatic degradation of PCL segments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4196–4205, 2005  相似文献   

20.
A calcium salt of mono(hydroxypentyl)phthalate [Ca(HPP)2] was synthesized by the reaction of 1,5‐pentanediol, phthalic anhydride, and calcium acetate. Four different bisureas such as hexamethylene bis(ω,N‐hydroxyethylurea), tolylene 2,4‐bis(ω,N‐hydroxyethylurea), hexamethylene bis(ω,N‐hydroxypropylurea), and tolylene 2,4‐bis(ω,N‐hydroxypropylurea) were prepared by reacting ethanolamine or propanolamine with hexamethylene diisocyanate (HMDI) or tolylene 2,4‐diisocyanate (TDI). Calcium‐containing poly(urethane‐urea)s (PUUs) were synthesized by reacting HMDI or TDI with 1:1 mixtures of Ca(HPP)2 and each of the bisureas with di‐n‐butyltin dilaurate as a catalyst. The PUUs were well characterized by Fourier transform infrared spectroscopy, 1H and 13C NMR, solid‐state 13C–cross‐polarization/magic‐angle spinning NMR, viscosity, solubility, elemental analysis, and X‐ray diffraction studies. Thermal properties of the polymers were also examined with thermogravimetric analyses and differential scanning calorimetry. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1809–1819, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号