首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An azido‐containing functional monomer, 11‐azido‐undecanoyl methacrylate, was successfully polymerized via ambient temperature single electron transfer initiation and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) method. The polymerization behavior possessed the characteristics of “living”/controlled radical polymerization. The kinetic plot was first order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn ≤ 1.22). The complete retention of azido group of the resulting polymer was confirmed by 1H NMR and FTIR analysis. Retention of chain functionality was confirmed by chain extension with methyl methacrylate to yield a diblock copolymer. Furthermore, the side‐chain functionalized polymer could be prepared by one‐pot/one‐step technique, which is combination of SET‐RAFT and “click chemistry” methods. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Copper(0)‐mediated radical polymerization (single electron transfer‐living radical polymerization) is an efficient polymerization technique that allows control over the polymerization of acrylates, vinyl chloride and other monomers, yielding bromide terminated polymer. In this contribution, we investigate the evolution of the end‐group fidelity at very high conversion both in the presence and in the absence of initially added copper (II) bromide (CuBr2). High resolution electrospray‐ionization mass spectroscopy (ESI‐MS) allows determination of the precise chemical structure of the dead polymers formed during the polymerization to very high monomer conversion, including post polymerization conditions. Two different regimes can be identified via ESI‐MS analysis. During the polymerization, dead polymer results mainly from termination via disproportionation, whereas at very high conversion (or in the absence of monomer, that is, post‐polymerization), dead polymers are predominantly generated by chain transfer reactions (presumably to ligand). The addition of CuBr2 significantly reduces the extent of termination by both chain transfer and disproportionation, at very high monomer conversion and under post‐polymerization conditions, offering a convenient approach to maintaining high end‐group fidelity in Cu(0)‐mediated radical polymerization. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
The controlled/living radical polymerization of 2‐(N‐carbazolyl)ethyl methacrylate (CzEMA) and 4‐(5‐(4‐tert‐butylphenyl‐1,3,4‐oxadiazol‐2‐yl)phenyl) methacrylate (t‐Bu‐OxaMA) via reversible addition‐fragmentation chain transfer polymerization has been studied. Functional polymers with hole‐ or electron‐transfer ability were synthesized with cumyl dithiobenzoate as a chain transfer agent (CTA) and AIBN as an initiator in a benzene solution. Good control of the polymerization was confirmed by the linear increase in the molecular weight (MW) with the conversion. The dependence of MW and polydispersity index (PDI) of the resulting polymers on the molar ratio of monomer to CTA, monomer concentration, and molar ratio of CTA to initiator has also been investigated. The MW and PDI of the resulting polymers were well controlled as being revealed by GPC measurements. The resulting polymers were further characterized by NMR, UV‐vis spectroscopy, and cyclic voltammetry. The polymers functionalized with carbazole group or 1,3,4‐oxadiazole group exhibited good thermal stability, with an onset decomposition temperature of about 305 and 323 °C, respectively, as determined by thermogravimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 242–252, 2007  相似文献   

4.
Polyesters and poly(ester carbonates) were synthesized via ring‐opening polymerization with new tin(II) macroinitiator adducts containing oligomeric L ‐lactide (LLA), rac‐lactide (rac‐LA), and ?‐caprolactone (CL). The novel initiating species were synthesized by the reaction of LLA, rac‐LA, or CL with Sn(OEt)2 (monomer concentration/initiator concentration ≤20) and then were dissolved in methylene chloride or toluene and stored in a stoppered flask for the subsequent ring‐opening polymerization of cyclic esters and carbonates. The soluble tin alkoxide macroinitiators yielded predictable and quantitative initiation of polymerization for up to 1 month of storage time at room temperature. The resulting polymers displayed low polydispersity (≤1.5), and a high monomer conversion (>95%) was obtained within relatively short polymerization times (≤2 h). Adjusting the monomer/macroinitiator ratio effectively controlled the molecular weights of the polymers. NMR was used to characterize the initiating species and polymer microstructure, and size exclusion chromatography was used to determine the molecular weight properties of the polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3434–3442, 2002  相似文献   

5.
A photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization of p‐methylstyrene (p‐MS) and styrene (St) with 2‐(dodecylthiocarbonothioylthio)‐2‐methylpropionic acid as the chain transfer agent (CTA) and aromatic aldehydes, including 4‐cyanobenzaldehyde (PC1), 2,4‐dimethoxy benzaldehyde, and 4‐methoxy benzaldehyde, as organic photocatalysts has been demonstrated via irradiation with 23 W compact fluorescent lamps. The kinetics of the polymerizations shows first order with respect to monomer conversions. Linear evolution of the Mn of the produced polymers with the monomer conversion is observed. Meanwhile, the as‐prepared polymers are of relatively narrow polydispersity (PDI = Mw/Mn). For instance, the polymerization of p‐MS shows living polymerization features using PC1 within a range of solvents. Especially, the Mn of PpMS increased from about 2100 to 12,700 g/mol with the monomer conversion from 8% to 52% in tetrahydrofuran. The controlled polymerization of St is also observed under optimal reaction conditions. However, the Mn discrepancy between the experimental readings and theoretical calculations is greater at the monomer conversions greater than 40% and the PDI increased gradually over the monomer conversion. This is probably because that CTA is strongly sensitive to the light irradiation with wave range around its characteristic absorption wavelength, leading to significant decomposition of CTA moieties during the RAFT polymerization. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2072–2079  相似文献   

6.
Developing new materials with unique properties for nanotechnology applications, in general, and supramolecular polymers, in particular, lie at the heart of much ongoing research. In line with these efforts, we have been exploring polymers containing terpyridine (terpy) in the side chain. Here we report a new monomer that effectively undergoes reversible addition fragmentation chain transfer polymerization (RAFT) to yield high‐molecular‐weight (Mn) polymers with narrow polydispersity (PDI). The monomer is an N‐succinimide activated ester of p‐vinyl benzoic acid. Under RAFT conditions, poly(N‐succinimide p‐vinylbenzoate)s were generated, with Mn ranging between 44 and 61 kDa and PDI of 1.03–1.07. One of these homopolymers was reacted with an amine functionalized terpy, creating a new homopolymer containing terpy ligands on every monomer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5618–5625, 2007  相似文献   

7.
The cationic ring‐opening polymerization of a seven‐membered cyclic monothiocarbonate, 1,3‐dioxepan‐2‐thione, produced a soluble polymer through the selective isomerization of thiocarbonyl to a carbonyl group {? [SC(C?O)O(CH2)4]n? }. The molecular weights of the polymer could be controlled by the feed ratio of the monomer to the initiators or the conversion of the monomer during the polymerization, although some termination reactions occurred after the complete consumption of the monomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1014–1018, 2005  相似文献   

8.
In this work, living radical polymerizations of a water‐soluble monomer poly(ethylene glycol) monomethyl ether methacylate (PEGMA) in bulk with low‐toxic iron catalyst system, including iron chloride hexahydrate and triphenylphosphine, were carried out successfully. Effect of reaction temperature and catalyst concentration on the polymerization of PEGMA was investigated. The polymerization kinetics showed the features of “living”/controlled radical polymerization. For example, Mn,GPC values of the resultant polymers increased linearly with monomer conversion. A faster polymerization of PEGMA could be obtained in the presence of a reducing agent Fe(0) wire or ascorbic acid. In the case of Fe(0) wire as the reducing agent, a monomer conversion of 80% was obtained in 80 min of reaction time at 90 °C, yielding a water‐soluble poly(PEGMA) with Mn = 65,500 g mol?1 and Mw/Mn = 1.39. The features of “living”/controlled radical polymerization of PEGMA were verified by analysis of chain‐end and chain‐extension experiments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The sterically stabilized emulsion polymerization of styrene initiated by a water‐soluble initiator at different temperatures has been investigated. The rate of polymerization (Rp) versus conversion curve shows the two non‐stationary‐rate intervals typical for the polymerization proceeding under non‐stationary‐state conditions. The shape of the Rp versus conversion curve results from two opposite effects—the increased number of particles and the decreased monomer concentration at reaction loci as the polymerization advances. At elevated temperatures the monomer emulsion equilibrates to a two‐phase or three‐phase system. The upper phase is transparent (monomer), and the lower one is blue colored, typical for microemulsion. After stirring such a multiphase system and initiation of polymerization, the initial coarse polymer emulsion was formed. The average size of monomer/polymer particles strongly decreased up to about 40% conversion and then leveled off. The initial large particles are assumed to be highly monomer‐swollen particles formed by the heteroagglomeration of unstable polymer particles and monomer droplets. The size of the “highly monomer” swollen particles continuously decreases with conversion, and they merge with the growing particles at about 40–50% conversion. The monomer droplets and/or large highly monomer‐swollen polymer particles also serve as a reservoir of monomer and emulsifier. The continuous release of nonionic (hydrophobic) emulsifier from the monomer phase increases the colloidal stability of primary particles and the number of polymer particles, that is, the particle nucleation is shifted to the higher conversion region. Variations of the square and cube of the mean droplet radius with aging time indicate that neither the coalescence nor the Ostwald ripening is the main driving force for the droplet instability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 804–820, 2003  相似文献   

10.
The polymerization of N‐vinylcarbazole (NVK) and carbazole methacrylate (CMA) was carried out using controlled radical polymerization methods such as atom transfer radical polymerization (ATRP), single electron transfer (SET)‐LRP, and single electron transfer initiation followed by reversible addition fragmentation chain transfer (SET‐RAFT). Well‐controlled polymerization with narrow molecular weight distribution (Mw/Mn) < 1.25 was achieved in the case of NVK by high‐temperature ATRP while ambient temperature SET‐RAFT polymerization was relatively slow and controlled. In the case of CMA, SET‐RAFT is found to be more suitable for the ambient temperature polymerization. The polymerization rate followed first order kinetics with respect to monomer conversion and the molecular weight of the polymer increased linearly with conversion. The controlled nature of the polymerization is further demonstrated by the synthesis of diblock copolymers from PNVK and PCMA macroinitiators using a new flavanone‐based methacrylate (FMA) as the second monomer. All the polymers exhibited fluorescence. The excimer bands in the homopolymers of PNVK and PCMA were very broad, which may be attributed to the carbazole–carbazole overlap interaction. The scanning electron microscopy analysis of the block copolymer reveals interesting morphological features. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
To study the possibility of living cationic polymerization of vinyl ethers with a urethane group, 4‐vinyloxybutyl n‐butylcarbamate ( 1 ) and 4‐vinyloxybutyl phenylcarbamate ( 2 ) were polymerized with the hydrogen chloride/zinc chloride initiating system in methylene chloride solvent at ?30 °C ([monomer]0 = 0.30 M, [HCl]0/[ZnCl2]0 = 5.0/2.0 mM). The polymerization of 1 was very slow and gave only low‐molecular‐weight polymers with a number‐average molecular weight (Mn) of about 2000 even at 100% monomer conversion. The structural analysis of the products showed occurrence of chain‐transfer reactions because of the urethane group of monomer 1 . In contrast, the polymerization of vinyl ether 2 proceeded much faster than 1 and led to high‐molecular‐weight polymers with narrow molecular weight distributions (MWDs ≤ ~1.2) in quantitative yield. The Mn's of the product polymers increased in direct proportion to monomer conversion and continued to increase linearly after sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixture, whereas the MWDs of the polymers remained narrow. These results indicated the formation of living polymer from vinyl ether 2 . The difference of living nature between monomers 1 and 2 was attributable to the difference of the electron‐withdrawing power of the carbamate substituents, namely, n‐butyl for 1 versus phenyl for 2 , of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2960–2972, 2004  相似文献   

12.
This paper describes the synthesis of a novel monomer of 5‐substituted cyclooctene with the pendant of imidazolium salt (7) and the ring‐opening metathesis polymerization of the functionalized cyclooctenes ( 4 and 7 ) in CH2Cl2 and ionic liquid [bmim][PF6] by a ruthenium‐based catalyst RuCl2(PCy3)(SIMes)(CHPh) (2). The polymerization, which was carried out in ionic liquid, afforded improved control over the molecular weight (Mn) and polydispersity of the resultant products (PDI <1.4). Furthermore, to facilitate the GPC measurement for molecular weight of polymers, the charged polymers (poly‐ 7 ) were hydrolyzed to give uncharged polymers (poly‐ 4 *) by removing the imidazolium pendant from the polymer chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3986–3993, 2007  相似文献   

13.
Cationic ring‐opening polymerization of ϵ‐thionocaprolactone was examined. The corresponding polythioester with the number‐average molecular weight (Mn ) of 57,000 was obtained in the polymerization with 1 mol % of BF3 · OEt2 as an initiator in CH2Cl2 at 28 °C for 5 h with quantitative monomer conversion. The Mn of the polymer increased with the solvent polarity and monomer‐to‐initiator ratio. No polymerization took place below −30 °C, and the monomer conversion and Mn of the polymer increased with the temperature in the range of −15 to 28 °C. The increase of initial monomer concentration was effective to improve the monomer conversion and the Mn of the obtained polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4057–4061, 2000  相似文献   

14.
The cationic polymerization of n‐hexyloxyallene was investigated by using halogen‐bonding organocatalysts ( Cat A – Cat D ). Although the neutral catalyst Cat C showed a poor polymerization activity, iodine‐carrying bidentate cationic catalyst Cat A brought about the smooth polymerization giving rise to a polymer with Mn of 2710 under [ Cat A ]:[IBVE‐HCl]:[monomer] = 10:10:500 in mM concentrations. Judging from the color change of polymerization system and electrospray ionization mass spectra of recovered catalyst, the decomposition of organocatalyst was suggested. When α‐bromodiphenylmethane was used as an initiator, the relatively controlled polymerization proceeded at the low monomer conversion likely due to the weak halogen‐bonding interaction of Cat A with the bromide anion. On the other hand, bromine‐carrying bidentate catalyst Cat D gave low‐molecular‐weight polymers (Mn < 1550) to be less suitable for polymerization. From the 1H‐NMR spectrum, it was found that the 1,2‐polymerization unit and 2,3‐polymerization unit are included in 75:25. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2436–2441  相似文献   

15.
An aqueous reversible‐deactivation radical polymerization (RDRP) approach is used to synthesize sodium polystyrene sulfonate directly from functionalized monomers to give uniformly and completely sulfonated materials. Reproducible gram scale syntheses are achieved under simple one pot reaction conditions at ambient temperatures, and full monomer conversions are achieved within approximately 3 h. Reaction variables such as pH, sodium chloride concentration, and methanol cosolvent have a significant effect on the molecular weights (Mn ≈ 20,000–400,000 g·mol?1) obtained by gel permeation chromatography coupled multiangle light scattering. Observed dispersities were reasonably narrow: Ð ≈ 1.05–1.3. A parametric optimization, rather than direct variation of the monomer to initiator ratio, resulted in some of the highest molecular weight polymers by an RDRP approach. Linear progression between Mn and monomer conversion occurs at a neutral reaction pH, which results in narrow polymer molecular weight distributions, along with high end‐group fidelity as demonstrated with chain extension reactions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1527–1537  相似文献   

16.
The Cu(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) using ethyl 2‐bromoisobutyrate (EBiB) as an initiator with Cu(0)/N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine as a catalyst system in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was studied. The polymerization showed some living features: the measured number‐average molecular weight (Mn,GPC) increased with monomer conversion and produced polymers with relatively low polydispersities. The increase of HFIP concentration improved the controllability over the polymerization with increased initiation efficiency and lowered polydispersity values. 1H NMR, MALDI‐TOF‐MS spectra, and chain extension reaction confirmed that the resultant polymer was end‐capped by EBiB species, and the polymer can be reactivated for chain extension. In contrast, in the cases of dimethyl sulfoxide or N,N‐dimethylformamide as reaction solvent, the polymerizations were uncontrolled. The different effects of the solvents on the polymerization indicated that the mechanism of SET‐LRP differed from that of atom transfer radical polymerization. Moreover, HFIP also facilitated the polymerization with control over stereoregularity of the polymers. Higher concentration of HFIP and lower reaction temperature produced higher syndiotactic ratio. The syndiotactic ratio can be reached to about 0.77 at 1/1.5 (v/v) of MMA/HFIP at ?18 °C. In conclusion, using HFIP as SET‐LRP solvent, the dual control over the molecular weight and tacticity of PMMA was realized. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6316–6327, 2009  相似文献   

17.
A synthetic route is developed for the preparation of an AB‐type of monomer carrying an epoxy and a thiol group. Base‐catalyzed thiol‐epoxy polymerization of this monomer gave rise to poly(β‐hydroxythio‐ether)s. A systematic variation in the reaction conditions suggested that tetrabutyl ammonium fluoride, lithium hydroxide, and 1,8‐diazabicycloundecene (DBU) were good polymerization catalysts. Triethylamine, in contrast, required higher temperatures and excess amounts to yield polymers. THF and water could be used as polymerization mediums. However, the best results were obtained in bulk conditions. This required the use of a mechanical stirrer due to the high viscosity of the polymerization mixture. The polymers obtained from the AB monomer route exhibited significantly higher molecular weights (Mw = 47,700, Mn = 23,200 g/mol) than the materials prepared from an AA/BB type of the monomer system (Mw = 10,000, Mn = 5400 g/mol). The prepared reactive polymers could be transformed into a fluorescent or a cationic structure through postpolymerization modification of the reactive hydroxyl sites present along the polymer backbone. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2040–2046  相似文献   

18.
Polymerization of diazoketones mediated by organoaluminum compounds was investigated. Trialkylaluminum R3Al (R = iBu, Et, Me) and diisobutylaluminum hydride (DIBAL) polymerized (E)‐1‐diazo‐3‐nonen‐2‐one ( 1 ) to give polymers with Mn = 2000–3500, which contained nearly 33 mol % of azo group (? N?N? ) along with the dominant acylmethylene unit in the main chain. On the other hand, when (E)‐1‐diazo‐4‐phenyl‐3‐buten‐2‐one ( 2 ) was used as a monomer for the organoaluminum‐mediated polymerization, the resulting polymers had ethylidene (? CH[CH3]? ) units in the main chain along with acylmethylene and azo group, as a result of reductive cleavage of the acyl group during the polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5209–5214, 2007  相似文献   

19.
Mizoroki‐Heck coupling polymerization of 1,4‐bis[(2‐ethylhexyl)oxy]‐2‐iodo‐5‐vinylbenzene ( 1 ) and its bromo counterpart 2 with a Pd initiator for the synthesis of poly(phenylenevinylene) (PPV) was investigated to see whether the polymerization proceeds in a chain‐growth polymerization manner. The polymerization of 1 with tBu3PPd(Tolyl)Br ( 10 ) proceeded even at room temperature when 5.5 equiv of Cy2NMe (Cy = cyclohexyl) was used as a base, but the molecular weight distribution of PPV was broad. The polymerization of 2 hardly proceeded at room temperature under the same conditions. In the polymerization of 1 , PPV with H at one end and I at the other was formed until the middle stage, and the polymer end groups were converted into tolyl and H in the final stage. The number‐average molecular weight (Mn) did not increase until about 90% monomer conversion and then sharply increased after that, indicating conventional step‐growth polymerization. The occurrence of step‐growth polymerization, not catalyst‐transfer chain‐growth polymerization, may be interpreted in terms of low coordination ability of H‐Pd(II)‐X(tBu3P) (X = Br or I), formed in the catalytic cycle of the Mizoroki‐Heck coupling reaction, to π‐electrons of the PPV backbone; reductive elimination of H‐X from this Pd species with base would take place after diffusion into the reaction mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 543–551  相似文献   

20.
The kinetics of the RAFT polymerization of p‐acetoxystyrene using a trithiocarbonate chain transfer agent, S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate, DDMAT, was investigated. Parameters including temperature, percentage initiator, concentration, monomer‐to‐chain transfer agent ratio, and solvent were varied and their impact on the rate of polymerization and quality of the final polymer examined. Linear kinetic plots, linear increase of Mn with monomer conversion, and low final molecular weight dispersities were used as criteria for the selection of optimized polymerization conditions, which included a temperature of 70 or 80 °C with 10 mol % AIBN initiator in bulk for low conversions or in 1,4‐dioxane at a monomer‐to‐solvent volume ratio of 1:1 for higher conversions This study opens the way for the use of DDMAT as a chain transfer agent for RAFT polymerization to incorporate p‐acetoxystyrene together with other functional monomers into well‐defined copolymers, block copolymers, and nanostructures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2517–2524, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号