首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphido‐diphosphine Group 3 metal complexes 1–4 [(o‐C6H4PR2)2P‐M(CH2SiMe3)2; R = Ph, 1 : M = Y, 2 : M = Sc; R = iPr, 3 : M = Y, 4 : M = Sc] are very efficient catalysts for the ring‐opening polymerization (ROP) of cyclic esters such as ε‐caprolactone (ε‐CL), L ‐lactide, and δ‐valerolactone under mild polymerization conditions. In the ROP of ε‐CL, complexes 1–4 promote quantitative conversion of high amount of monomer (up to 3000 equiv) with very high turnover frequencies (TOF) (~4 × 104 molCL/molI h) showing a catalytic activity among the highest reported in the literature. The immortal and living ROP of ε‐CL and L ‐lactide is feasible by combining complexes 1–4 with 5 equiv of 2‐propanol. Polymers with controlled molecular parameters (Mn, end groups) and low polydispersities (Mw/Mn = 1.05–1.09) are formed as a result of fast alkoxide/alcohol exchange. In the ROP of δ‐valerolactone, complexes 1–4 showed the same activity observed for lactide (L ‐ and D ,L ‐lactide) producing high molecular weight polymers with narrow distribution of molar masses. Complexes 1–4 also promote the ROP of rac‐β butyrolactone affording atactic low molecular weight poly(hydroxybutyrate) bearing unsaturated end groups probably generated by elimination reactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
New Group 3 metal complexes of the type [LM(CH2SiMe3)2(THF)n] supported by tridentate phosphido‐diphosphine ligands [(o‐C6H4PR2) 2 PH; L1‐H : R = iPr; L2‐H : R = Ph] have been synthesized by reaction of L1‐H and L2‐H with [M(CH2SiMe3)3(THF)2)] (M = Y and Sc). All the new complexes [(o‐C6H4PR2) 2 PM(CH2SiMe3)2(THF)n] [M = Y, R = iPr (1), R = Ph (2); M = Sc, R = iPr (3), R = Ph (4)] were studied as initiators for the ring opening polymerization of lactide. The yttrium complexes ( 1 and 2 ) exhibited high activity and good polymerization control, shown by the linear fits in the plot of number‐averaged molecular weight (Mn) versus the percentage conversion and versus the monomer/initiator ratio and by the low polydispersity index values. Interestingly, very good molar‐mass control was observed even when L ‐Lactide was polymerized in the absence of solvent at 130 °C. A good molar‐mass control but lower activities were observed in the polymerization reaction of lactide promoted by the analogous scandium complexes 3 and 4 . © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1374–1382, 2010  相似文献   

3.
A series of aluminum dimethyl complexes 1 – 6 bearing N‐[2‐(pyrrolidinyl)benzyl]anilido ligands were synthesized and well characterized. The molecular structure of complex 1 determined by an X‐ray diffraction study indicates the bidentate chelating mode of the pyrrolidinyl‐anilido ligand. In the absence of a coinitiator, these complexes exhibited excellent control toward the polymerizations of ε‐caprolactone and rac‐lactide, affording polyesters with quite narrow molecular weight distributions (Mw/Mn = 1.04–1.26). The end group analysis of ε?CL oligomer via 1H NMR and ESI‐TOF MS methods gave strong support to the hypothesis that the polymerization catalyzed by these aluminum complexes proceeds via a coordination‐insertion mechanism involving a unique Al? N (amido) bond initiation. Via 1H NMR scale oligomerization studies, it is suggested that the insertion of the first lactide monomer into Al? N bond of the complex is much easier than the insertion of lactide monomer into the newly formed Al? O (lactate) bond and might also be easier than the insertion of the first ε?CL monomer into Al? N bond. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3096–3106  相似文献   

4.
An amino isopropoxyl strontium (Sr‐PO) initiator, which was prepared by the reaction of propylene oxide with liquid strontium ammoniate solution, was used to carry out the ring‐opening polymerization (ROP) of cyclic esters to obtain aliphatic polyesters, such as poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA). The Sr‐PO initiator demonstrated an effective initiating activity for the ROP of ε‐caprolactone (ε‐CL) and L‐lactide (LLA) under mild conditions and adjusted the molecular weight by the ratio of monomer to Sr‐PO initiator. Block copolymer PCL‐b‐PLLA was prepared by sequential polymerization of ε‐CL and LLA, which was demonstrated by 1H NMR, 13C NMR, and gel permeation chromatography. The chemical structure of Sr‐PO initiator was confirmed by elemental analysis of Sr and N, 1H NMR analysis of the end groups in ε‐CL oligomer, and Fourier transform infrared (FTIR) spectroscopy. The end groups of PCL were hydroxyl and isopropoxycarbonyl, and FTIR spectroscopy showed the coordination between Sr‐PO initiator and model monomer γ‐butyrolactone. These experimental facts indicated that the ROP of cyclic esters followed a coordination‐insertion mechanism, and cyclic esters exclusively inserted into the Sr–O bond. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1934–1941, 2003  相似文献   

5.
A series of new alkyl mono‐ and bimetallic aluminum complexes supported by novel amidinate ligands has been prepared in very high yields. These complexes were fully characterized by spectroscopic methods. Alkyl aluminum complexes 1 – 6 were investigated as catalysts for the ring‐opening polymerization and copolymerization of ε‐caprolactone and L‐lactide. Under the optimal reaction conditions, complex 5 acts as an efficient single‐component initiator for the ring‐opening polymerization and copolymerization of cyclic esters to yield biodegradable polyester materials with narrow polydispersities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2397–2407  相似文献   

6.
We report the synthesis and characterization of new Ca(II) and Mg(II) complexes of the type [Ph―PPP]MR (M = Ca, R = N(SiMe3)2 ( 1 ); M = Mg, R = nBu ( 2 )) where Ph―PPP? is a tridentate monoanionic ligand (Ph―PPP―H = bis(2‐diphenylphosphinophenyl)phosphine). Reaction of the opportune metal precursor (Ca[N(SiMe3)2]2.THF2 or MgnBu2) with 1 equiv. of the pro‐ligand Ph―PPPH produces the corresponding calcium amido ( 1 ) or magnesium butyl ( 2 ) complex in high yield. Solution NMR studies show monomeric and kinetically stable structures for both species. The obtained complexes efficiently mediate the ring‐opening polymerization of ?‐caprolactone showing a turnover frequency of 40 000 h?1. In the presence of a hexogen alcohol, up to 2000 equiv. of monomer are converted by using a low loading of catalyst (5 µmol). Kinetic studies show a first‐order reaction in monomer concentration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Binaphthyl‐diyl hydrogen phosphate has been assessed for the first time as a catalyst for the ring‐opening polymerization of ε‐caprolactone (CL) and δ‐valerolactone (VL). In the presence of benzyl alcohol as coinitiator at 40–60 °C, the polymerization is quantitative and controlled both in terms of dispersity and of number‐average molecular weight corresponding to the monomer/initiator ratio. The use of a selectively protected D ‐glucose derivative bearing the primary C6 hydroxyl group as initiator leads to the quantitative end‐functionalization of the polyesters in rather short reaction times (ca. 10 min at 60 °C for δ‐VL) with dispersities around 1.08–1.10. Methyl‐α‐D ‐glucopyranoside has been used as a carbohydrate polyol initiator in bulk. The initiation efficiency is partial, leading to hydrophilic carbohydrates functionalized polylactones in a one‐step procedure. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Poly(lactide) (PLA), poly(ε‐caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) homopolymers of high molecular weight were prepared using potassium‐based catalyst. Polymerizations were carried out in toluene at room temperature. The chemical structure of the polymers was investigated by 1H and 13C NMR. The physical properties investigated by GPC and DSC for the polymers obtained are similar to those prepared using tin octanoate based catalyst. Using a sequential polymerization procedure, PLA‐b‐PCL, PLA‐b‐PTMC, and PCL‐b‐PTMC diblock copolymers were synthesized and characterized in terms of their composition and physical properties. The formation of diblock copolymers was confirmed by NMR and DSC measurements. In vitro cytotoxicity tests have been carried out using MTS assay and the results show the biocompatibility of these polymers in the presence of the fibroblast cells. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5348–5362, 2008  相似文献   

9.
Zinc catalysts incorporated by imino‐benzotriazole phenolate ( IBTP ) ligands were synthesized and characterized by single‐crystal X‐ray structure determinations. The reaction of the ligand precursor ( C1DMeIBTP ‐H or C1DIPIBTP ‐H) with diethyl zinc (ZnEt2) in a stoichiometric proportion in toluene furnished the di‐nuclear ethyl zinc complexes [(μ‐ C1DMeIBTP )ZnEt]2 ( 1 ) and [(μ‐ C1DIPIBTP )ZnEt]2 ( 2 ). The tetra‐coordinated monomeric zinc complex [( C1PhIBTP )2Zn] ( 3 ) or [( C1BnIBTP )2Zn] ( 4 ) resulted from treatment of C1PhIBTP ‐H or C1BnIBTP ‐H as the pro‐ligand under the similar synthetic method with ligand to metal precursor ratio of 2:1. Single‐crystal X‐ray diffraction of bimetallic complexes 1 and 2 indicates that the C1DMeIBTP or C1DIPIBTP fragment behaves a NON‐tridentate ligand to coordinate two metal atoms. Catalysis for ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL), β‐butyrolactone (β‐BL), and lactide (LA) of complexes 1 and 2 was systematic studied. In combination with 9‐anthracenemethanol (9‐AnOH), Zn complex 1 was found to polymerize ε‐CL, β‐BL, and L‐LA with efficient catalytic activities in a controlled character. This study also compared the reactivity of these ROP monomers with different ring strains by Zn catalyst 1 in the presence of 9‐AnOH. Additionally, Zn complex 1 combining with benzoic acid was demonstrated to be an active catalytic system to copolymerize phthalic anhydride and cyclohexene oxide. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 714–725  相似文献   

10.
The alcoholysis of the heteroscorpionate methyl aluminum complex (bpzmp)AlMe2 ( 1 ) (bpzmp = 2,4‐di‐tert‐butyl‐6‐(bis‐(3,5‐dimethylpyrazol‐1‐yl)methyl)phenoxo), promoted both by phenol and isopropanol, has been investigated. The reaction of 1 with phenol afforded the dimeric mono(phenoxo) derivative 2 , whereas the alcoholysis of 1 with the less acidic isopropanol involved the coordinated heteroscorpionate ligand and led to the tetrahedral complex 3 in which the aluminum atom is surrounded by one κ2‐N,O? coordinated bpzmp ligand and one η1‐O? coordinated ppzmp ligand (ppzmp = 2,4‐di‐tert‐butyl‐6‐(i‐propoxy‐(3,5‐dimethylpyrazol‐1‐yl)methyl)phenoxo). Complexes 1 – 3 have been tested in the ring opening polymerization (ROP) of L ‐lactide. The dimeric mono(phenoxo) derivative 2 was inactive in the ROP of L ‐lactide. Quite surprisingly, complex 3 was found to be active in ROP of L ‐ and rac‐lactide, showing a good molar‐mass control. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3632–3639, 2010  相似文献   

11.
The use of tetrakis Sn(IV) alkoxides as highly active initiators for the ring‐opening polymerization of D ,L ‐lactide is reported. The activities of prepared Sn(IV) tetra‐2‐methyl‐2‐butoxide, Sn(IV) tetra‐iso‐propoxide, and Sn(IV) tetra‐ethoxide were compared to a well‐known ring‐opening polymerization initiator system, Sn(II) octoate activated with n‐butanol. All polymerizations were conducted at 75 °C in toluene. The activities of tetrakis Sn(IV) alkoxides grew in order of increasing steric hindrance, and the bulky Sn(IV) alkoxides showed higher activity than the Sn(II) octoate/butanol system. The living character of the polymerization was demonstrated in homopolymerization of D ,L ‐lactide and in block copolymerization of L ‐lactide with ?‐caprolactone. 1H, 13C, and 119Sn NMR were used to characterize the prepared Sn(IV) alkoxides and the polymer microstructure, and size exclusion chromatography was used to determine the molar masses as well as the molar‐mass distributions of the polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1901–1911, 2004  相似文献   

12.
Poly(trimethylene terephthalate) (PTT) was prepared by the ring‐opening polymerization of its cyclic dimer. Antimony(III) oxide, titanium(IV) butoxide, dibutyltin oxide, and titanium(IV) isopropoxide were used as catalysts. Among the catalysts, titanium(IV) butoxide was the most effective for the same reaction conditions. A weight‐average molecular weight of 63,500 g/mol was obtained from ring‐opening poly merization at 265 °C for 2 h in the presence of 0.5 mol % titanium(IV) butoxide. The PTTs obtained from the polymerization catalyzed with increasing amounts of antimony(III) oxide showed increasing weight‐average molecular weights and reaction conversions. When 1 mol % antimony(III) oxide was used, the weight‐average molecular weight was 32,000 g/mol and the conversion was 82% after 1 h of polymerization at 265 °C. In the case of the polymer catalyzed by titanium(IV) butoxide under the same conditions, the weight‐average molecular weight and conversion were 40,000 g/mol and 77% when 0.25 mol % was used, whereas 0.5 mol % catalyst produced a weight‐average molecular weight of 27,000 g/mol and a conversion of 95%. To get an acceptable molecular weight and relatively high reaction conversion, a catalyst concentration of at least 0.5 mol % was found to be necessary, in contrast to conventional condensation polymerizations, which require only about one‐tenth of this amount of the catalyst. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6801–6809, 2006  相似文献   

13.
The ring‐opening polymerization of L ‐lactide initiated by single‐component rare‐earth tris(4‐tert‐butylphenolate)s was conducted. The influences of the rare‐earth elements, solvents, temperature, monomer and initiator concentrations, and reaction time on the polymerization were investigated in detail. No racemization was found from 70 to 100 °C under the examined conditions. NMR and differential scanning calorimetry measurements further confirmed that the polymerization occurred without epimerization of the monomer or polymer. A kinetic study indicated that the polymerization rate was first‐order with respect to the monomer and initiator concentrations. The overall activation energy of the ring‐opening polymerization was 79.2 kJ mol?1. 1H NMR data showed that the L ‐lactide monomer inserted into the growing chains with acyl–oxygen bond cleavage. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6209–6215, 2004  相似文献   

14.
A series of magnesium benzylalkoxide complexes, [LnMg(μ‐OBn)]2 ( 1 – 14 ) supported by NNO‐tridentate pyrazolonate ligands with various electron withdrawing‐donating subsituents have been synthesized and characterized. X‐ray crystal structural studies revealed that Complexes 1 – 3 , 5 , 7 , 9 , and 10 are dinuclear bridging through benzylalkoxy oxygen atoms with penta‐coordinated metal centers. All of these complexes acted as efficient initiators for the ring‐opening polymerization of L‐lactide and rac‐lactide. Based on kinetic studies, the activity of these metal complexes is significantly influenced by the electronic effect of the ancillary ligands with the electron‐donating substituents at the phenyl rings enhancing the polymerization rate. In addition, the “living” and “immortal” character of 6 has paved a way to synthesize as much as 40‐fold polymer chains of polylactides with a very narrow polydispersity index in the presence of a small amount of initiator. Among all of magnesium complexes, Complex 6 exhibits the highest stereoselectivity toward ring‐opening polymerization of rac‐lactide with Pr up to 88% in THF at 0 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Ring opening polymerization (ROP) of hexamethylcyclotrisiloxane (D3) and octamethylcyclotetrasiloxane (D4) was promoted by acid‐treated synthetic and natural silica‐aluminates. Silica‐alumina (1:3 Si/Al molar ratio) was obtained using a simple and economic route from precipitation of aluminum sulfate solutions. The material was treated in an acidic medium to improve the content of acid sites and successfully tested as inorganic acidic catalyst for ROP of D3 or D4 cyclosiloxanes. Natural bentonite was treated and used in a similar manner. Once the ROP reaction completed, the catalyst was easily removed and it was found that the recovered synthetic silica‐alumina was active in a second ROP reaction. The effect of the concentration and type of catalyst in respect to the molecular weight and polydispersity of polydimethylsiloxanes was analyzed: increasing the amount of silica‐alumina in ROP of D4 from 0.05 to 0.1 g decreased the average molecular weight (Mn = 13–1.8 kDa) associated with an increase in the polydispersity (2.95 vs. 1.81). Analogous results were found with bentonite. These values suggest that an increase in the catalyst concentration led to a lower Mn, with a more homogeneous molecular chain dimension. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
(R)‐(+)‐binaphathyl‐diyl hydrogen phosphate (BNPH)/ diazabicyclo[5.4.0]undec‐7‐ene (DBU) and (1R)‐(?)?10‐camphorsulfonic acid (CSA)/4‐dimethylaminopyridine (DMAP) acid–base salts were synthesized and assessed for the ring‐opening polymerization of rac‐lactide. They were found to be inactive toward the polymerization in the presence of a protic initiator. When used in combination with a base such as DBU or DMAP and a protic initiator, these acid/base conjugates led to well‐controlled polymerization in mild conditions (DM < 1.1 in all cases). With DBU, the presence of the salt was found to lead to narrower molecular weight distributions than those obtained using the base alone, and to prevent undesirable transesterification reactions occurring at the end of the reaction. An increase in activity was observed using the salts in combination with DMAP as compared with DMAP alone, together with an improvement of the control over the molecular weight. The results were discussed on the basis of 1H nuclear magnetic resonance analyzes including acid/base equilibria involving the use of two different bases. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 659–664  相似文献   

17.
A series of efficient catalysts, based on zinc alkoxides coordinated with NNO‐tridentate Schiff‐base ligands (L1H‐L6H), for ring opening polymerization of L ‐lactide have been prepared. The reactions of diethyl zinc (ZnEt2) with L1H‐L6H yielded [(μ‐L)ZnEt]2 ( 1a–6a ), respectively. Further reaction of compounds 1a–6a with benzyl alcohol (BnOH) produced the corresponding compounds of [LZn(μ‐OBn)]2 ( 1b–6b), respectively. X‐ray crystal structural studies reveal that all of these compounds 1a–6a are dimeric bridging through the phenolato oxygen atoms of the Schiff‐base ligand. However, the molecular structures of 1b–6b show a dimeric character bridging through the benzylalkoxy oxygen atoms. Ring‐opening polymerization of L ‐lactide, initiated by 1b–6b , proceeds rapidly with good molecular weight control and yields polymer with a very narrow molecular weight distribution. Experimental results show that the substituents on the imine carbon of the NNO‐ligand affect the reactivity of zinc complexes dramatically. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6466–6476, 2008  相似文献   

18.
Ring‐opening polymerization of rac‐ and meso‐lactide initiated by indium bis(phenolate) isopropoxides {1,4‐dithiabutanediylbis(4,6‐di‐tert‐butylphenolate)}(isopropoxy)indium ( 1 ) and {1,4‐dithiabutanediylbis(4,6‐di(2‐phenyl‐2‐propyl)phenolate)}(isopropoxy)indium ( 2 ) is found to follow first‐order kinetics for monomer conversion. Activation parameters ΔH? and ΔS? suggest an ordered transition state. Initiators 1 and 2 polymerize meso‐lactide faster than rac‐lactide. In general, compound 2 with the more bulky cumyl ortho‐substituents in the phenolate moiety shows higher polymerization activity than 1 with tert‐butyl substituents. meso‐Lactide is polymerized to syndiotactic poly(meso‐lactides) in THF, while polymerization of rac‐lactide in THF gives atactic poly(rac‐lactides) with solvent‐dependent preferences for heterotactic (THF) or isotactic (CH2Cl2) sequences. Indium bis(phenolate) compound rac‐(1,2‐cyclohexanedithio‐2,2′‐bis{4,6‐di(2‐phenyl‐2‐propyl)phenolato}(isopropoxy)indium ( 3 ) polymerizes meso‐lactide to give syndiotactic poly(meso‐lactide) with narrow molecular weight distributions and rac‐lactide in THF to give heterotactically enriched poly(rac‐lactides). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4983–4991  相似文献   

19.
In this contribution, we explored the catalytic ring‐opening polymerization (ROP) of (macro)lactones using salen–aluminum complexes bearing cyclic β‐ketoiminato ligand. The effects of bridge moiety and ring size in the benzocyclane skeleton on the catalytic activity of these complexes were thoroughly investigated. Complex 5 with 2,2‐dimethylpropylene bridge and five‐membered cyclane ring can efficiently catalyze the ROP of ω‐pentadecalactone (ω‐PDL), showing higher catalytic activity (turnover frequency [TOF] up to 309.2 h?1) than the typical Al‐salen analogs bearing salicylaldiminato ligand (TOF = 227.2 h?1). Thus, polyethylene‐like polyester with high‐molecular weight (up to 164.5 kg/mol) could be easily prepared under optimal conditions. In addition, complex 5 can also catalyze the ROP of lactide (LA) and ε‐caprolactone (ε‐CL) with extremely high activity (TOF is high up to 147.6 h?1 and 4752 h?1, respectively). Here, we demonstrated a rare mono‐nuclear salen‐Al complex that can prompt the ROP of (macro)lactones with unprecedentedly high efficiency. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 973–981  相似文献   

20.
Polyesters and poly(ester carbonates) were synthesized via ring‐opening polymerization with new tin(II) macroinitiator adducts containing oligomeric L ‐lactide (LLA), rac‐lactide (rac‐LA), and ?‐caprolactone (CL). The novel initiating species were synthesized by the reaction of LLA, rac‐LA, or CL with Sn(OEt)2 (monomer concentration/initiator concentration ≤20) and then were dissolved in methylene chloride or toluene and stored in a stoppered flask for the subsequent ring‐opening polymerization of cyclic esters and carbonates. The soluble tin alkoxide macroinitiators yielded predictable and quantitative initiation of polymerization for up to 1 month of storage time at room temperature. The resulting polymers displayed low polydispersity (≤1.5), and a high monomer conversion (>95%) was obtained within relatively short polymerization times (≤2 h). Adjusting the monomer/macroinitiator ratio effectively controlled the molecular weights of the polymers. NMR was used to characterize the initiating species and polymer microstructure, and size exclusion chromatography was used to determine the molecular weight properties of the polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3434–3442, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号