首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical reduction of 2,4‐dimethyl(diethyl)‐9‐oxo‐10‐(4‐heptoxyphenyl)‐9H‐thioxanthenium hexafluorophosphates in acetonitrile (MeCN) and N,N‐dimethylformamide is an irreversible 1‐electron process accompanied by the cleavage of the C(Ph)‐S bond in thioxanthenium cations with the formation of the corresponding 2,4‐dimethyl(diethyl)‐9H‐thioxanthene‐9‐ones. One‐electron reversible electrochemical reduction of the latter compounds occurs at more negative potentials and yields the corresponding radical anions, which have been characterized by electron paramagnetic resonance spectroscopy and density functional theory calculations at the (U)B3LYP/6‐31+G*/polarizable continuum model level of theory.  相似文献   

2.
Compounds with strong absorptions in the ultraviolet (UV) region of the spectrum, particularly the UVA and UVB, have seen much interest as UV screeners or absorbers in a wide variety of commercial products. A series of benzisoxazole 2‐oxides have been synthesized and characterized by UV–vis spectroscopy. A number of derivatives have been shown to posses moderate to strong molar absorption coefficients in the UVB range (ca. 300 nm), the strongest being those derived from benzophenones. Three other derivatives containing additional electron withdrawing groups showed strong molar absorption coefficients in the UVA (ca. 340 nm). Solvent effects on the parent derivatives show changes in the molar absorption coefficients with little changes in the λmax values. Preliminary studies of these compounds as potential additives to prevent photooxidation of polystyrene showed considerable inhibition of polymer degradation with the parent unsubstituted benzisoxazole 2‐oxide compounds being the most effective. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Ten nitrophenyl N‐glycosides have been studied electrochemically in neutral (at pH 7) water–organic solutions by cyclic voltammetry using static mercury drop electrode. For all compounds under investigation the two electrochemical processes have been observed: the four‐electron irreversible reduction of their nitro groups to the corresponding phenylhydroxylamine derivatives, as well as the two‐electron quasi‐reversible process between phenylhydroxylamine and nitroso derivatives. For three compounds the additional electrochemical processes have been also observed, which can be connected with the formation of azoxybenzene derivatives. The potentials of both redox processes: a two‐electron quasi‐reversible R? NHOH/R? NO (Ef) and four‐electron irreversible R? NO2/R? NHOH (Epc(I)) systems have been determined and discussed according to crystal structures of selected compounds. Ef and Epc(I) depended strongly on the positive mesomeric effect (caused by glycosidic nitrogen atom), as well as on the intramolecular hydrogen bond between electroactive nitro group and the hydrogen atom at the glycosidic atom observed in No‐nitrophenyl‐2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranosylamine. Moreover, the chirality of selected reactants has had the pronounced effect on the Epc(I). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Intramolecular hydrogen bonding in the primarily and secondarily substituted quinoline‐2‐carboxamides and their N‐oxides has been studied in the solution by multinuclear NMR spectroscopy. Hydrogen bonding patterns and supramolecular arrangement in the solid state have been determined by single crystal X‐ray analysis. In quinoline‐2‐carboxamides weak, nonlinear intramolecular N? H…N hydrogen bond is present, but in the solid state the intermolecular hydrogen bonds and packing forces are the factors that decide on the properties of 3D structures. In quinoline‐2‐carboxamide N‐oxides the most important structural features are the intramolecular hydrogen bonds. Details of different weak interactions and resulting 3D arrangement of molecules are discussed. In the solution, two separate 1H signals are observed for the primary quinoline‐2‐carboxamides in the range from ca. 5.8 to 8.1 ppm. The chemical shifts of the NH group's proton for studied R′‐quinoline‐2‐R‐carboxamides are in the range from 8.1 to 8.4 ppm. For the N‐oxide of 4‐R′‐quinoline‐2‐carboxamides (R′ = H, Me, OPh, Cl and Br), the values of the proton chemical shifts of the NH group in the range from 10.78 to 11.38 ppm (for primary amides) indicating that this group forms hydrogen bonds with the oxygen of the N‐oxide group. This bond is stronger than the N? H…N bond in quinoline‐2‐carboxamides. For the secondary amide N‐oxides, the δ(NH) values are increasing from 11.25 to 11.77 ppm in the sequence of substituents 4‐Br < 4‐Cl < 4‐H < 4‐Me < 4‐OPh. For 4‐substituted compounds these values depend also on the substituent effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The synthesis of three new quinoxaline mono‐N‐oxides derivatives, namely, 2‐tert‐butoxycarbonyl‐3‐methylquinoxaline‐N‐oxide, 2‐phenylcarbamoyl‐3‐ethylquinoxaline‐N‐oxide, and 2‐carbamoyl‐3‐methylquinoxaline‐N‐oxide, from their corresponding 1,4‐di‐N‐oxides is reported. Samples of these compounds were used for a thermochemical study, which allowed derivation of their gaseous standard molar enthalpies of formation, , from their enthalpies of formation in the condensed phase, , determined by static bomb combustion calorimetry, and from their enthalpies of sublimation, , determined by Calvet microcalorimetry. Finally, combining the for the quinoxaline‐N‐oxides derived in this work with literature values for the corresponding 1,4‐di‐N‐oxides and atomic oxygen, the bond dissociation enthalpies for cleavage of the first N?O bond in the di‐N‐oxides, DH1(N–O), were obtained and compared with existing data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Two series of new N‐1 acylindazoles containing 5‐ or 6‐nitro groups were synthesized with moderate to good yields and characterized by IR and NMR spectroscopy. Cyclic voltammetry in aprotic media was utilized for the electrochemical characterization of the compounds. The calculated reduction potentials in physiological conditions are similar to those of known commercial antichagasic drugs. Therefore, the novel series reported herein are prospective candidates for antichagasic biological evaluation. Theoretical calculation results indicate that the studied dinitro derivatives undergo a single step reduction process because of the energy proximity of their radical and anionic state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Herein, we report the synthesis, electrochemical, and computational evaluation of six 2‐substituted imidazolium bromides and six 2‐substituted imidazolium triflates. All final compounds were obtained in 2 or fewer synthetic steps from inexpensive starting materials and display a single, irreversible electrochemical reduction. The reduction potentials span a range greater than 1 V depending on the electron withdrawing power of the 2‐substituent. Imidazolium bromides such as Bn2(H)ImBr reduce with E1/2 = ?2.70 V vs Fc/Fc+, whereas the electron‐withdrawing Br‐containing analog Bn2(Br)ImBr reduces at only ?1.58 V vs Fc/Fc+. The reduction potential of imidazolium bromides obeys a linear free energy relationship to σm Hammett constants, whereas imidazolium triflates correlate better with the σp Hammett constants. These results indicate that the stabilizing effect of the 2‐substituent is anion‐sensitive, changing from induction to resonance upon exchanging bromide for triflate. Predicted electron affinities from density functional theory–optimized structures of imidazolium cations and reduced species more closely match experimental data for the triflates, suggesting that a triflate anion does not electronically perturb the imidazolium core as much as a bromide. Taken together, these data highlight the dual modularity of imidazolium salts by changing both 2‐substituent and anion.  相似文献   

8.
A series of nitrophenyl β‐cyclodextrin derivatives: mono[6‐deoxy‐6‐(4‐nitrobenzamido)]‐per‐ O‐methyl‐β‐cyclodextrin (R1? Ph? NO2), mono[6‐deoxy‐6‐(3‐nitrobenzamido)]‐per‐O‐methyl‐β‐cyclodextrin (R2? Ph? NO2) and heptakis[6‐deoxy‐6‐(4‐nitrobenzamido)‐2,3‐di‐O‐methyl]‐β‐cyclodextrin [R3? (Ph? NO2)7] were synthesized. Purity and composition of the obtained substances were checked. Electroreduction of nitro groups of the new synthesized compounds was investigated on mercury electrode using cyclic voltammetry and chronocoulometry. The parameters of the reduction processes of ? NO2 groups of the investigated compounds were found not to be comparable to the reduction of nitrobenzene under the same experimental conditions. Moreover, the electroreduction of nitro groups in these nitrophenyl derivatives was dependent on pH, the type of the studied compound, and slightly on the solvent composition. All the reactants were strongly adsorbed on mercury electrode. In the case of R3? (Ph? NO2)7, its seven nitro groups were reduced practically at the same potential, and no radical anion formation was observed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This study reports a facial regio‐selective synthesis of 2‐alkyl‐N‐ethanoyl indoles from substituted‐N‐ethanoyl anilines employing palladium (II) chloride, which acts as a cyclization catalyst. The mechanistic trait of palladium‐based cyclization is also explored by employing density functional theory. In a two‐step mechanism, the palladium, which attaches to the ethylene carbons, promotes the proton transfer and cyclization. The gas‐phase barrier height of the first transition state is 37 kcal/mol, indicating the rate‐determining step of this reaction. Incorporating acetonitrile through the solvation model on density solvation model reduces the barrier height to 31 kcal/mol. In the presence of solvent, the electron‐releasing (–CH3) group has a greater influence on the reduction of the barrier height compared with the electron‐withdrawing group (–Cl). These results further confirm that solvent plays an important role on palladium‐catalyzed proton transfer and cyclization. For unveiling structural, spectroscopic, and photophysical properties, experimental and computational studies are also performed. Thermodynamic analysis discloses that these reactions are exothermic. The highest occupied molecular orbital?lowest unoccupied molecular orbital gap (4.9–5.0 eV) confirms that these compounds are more chemically reactive than indole. The calculated UV–Vis spectra by time‐dependent density functional theory exhibit strong peaks at 290, 246, and 232 nm, in good agreement with the experimental results. Moreover, experimental and computed 1H and 13C NMR chemical shifts of the indole derivatives are well correlated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
We have synthesized 4‐[N‐phenyl‐N‐(3‐methylphenyl)‐amino]‐benzoic acid (4‐[PBA]) and investigated its molecular vibrations by infrared and Raman spectroscopies as well as by calculations based on the density functional theory (DFT) approach. The Fourier transform (FT) Raman, dispersive Raman and FT‐IR spectra of 4‐[PBA] were recorded in the solid phase. We analyzed the optimized geometric structure and energies of 4‐[PBA] in the ground state. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital analysis. The results show that change in electron density in the σ* and π* antibonding orbitals and E2 energies confirm the occurrence of intramolecular charge transfer within the molecule. Theoretical calculations were performed at the DFT level using the Gaussian 09 program. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compound, which show agreement with the observed spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The kinetics of base catalyzed cyclization of 2,6‐dinitrophenylsulfanyl ethanenitrile and 2,4,6‐trinitrophenylsulfanyl ethanenitrile giving 2‐cyano‐7‐nitrobenzo[d]thiazole‐3‐oxide and 2‐cyano‐5,7‐dinitrobenzo[d]thiazole‐3‐oxide respectively was studied in methanolic methoxyacetate, acetate, trichlorophenoxide, N‐methylmorpholine, and N‐methylpiperidine buffers at 25 °C and I = 0.1 mol L?1. It was found that reaction involves both general acid and general base catalyses whose manifestation depends on the pKa of the acid‐buffer component and the ratio of both buffer components. In weakly basic buffers the rate‐limiting step is C? H bond breaking in the cyclic intermediate, while in strongly basic buffers the rate‐limiting step is the general acid‐catalyzed elimination of hydroxyl group from the intermediate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The reactions of 3‐hydroxyanthranilic acid (3‐OHAA) with N3?, NO2?, NO?, CCl3O2? , and OH? radicals were examined using a pulse radiolysis technique mainly at pH 7. The bimolecular electron transfer from secondary one‐electron oxidants results in the formation of anilino radical (λmax ? 380 nm). The rate constant for the reaction of N3? radical with 3‐OHAA at pH 7 was found to be 6.3 × 109 dm3 mol?1 s?1. It was observed that the 3‐OHAA reacts with oxygen centered radicals. The repair rate constant for the electron transfer reaction from 3‐OHAA to guanosine radical and chlorpromazine cation radical was also examined using a pulse radiolysis technique. Kinetic studies indicate that 3‐OHAA may act as an antioxidant to repair free‐radical damage to above mentioned biologically important compounds. The rate constants of electron transfer from the 3‐OHAA to the guanosine and chlorpromazine radicals were determined. The one‐electron reduction potential for 3‐OHAA radical was found to be 0.53 ± 0.06 V versus NHE. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Photolysis of substituted thiophene‐S‐oxides in solution results in the formation of either the corresponding thiophene or furan, in addition to uncharacterized materials. No good rationalization is available for the choice of which pathway may predominate, but it is demonstrated that the photolysis of 2,5‐bistrimethylsilylthiopene‐ S‐oxide produces O(3P) in the same manner as the well‐established photolysis of dibenzothiophene‐S‐oxide. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The electrochemical conversion of CO2 into value‐added products using room temperature ionic liquids as solvent/electrolyte has been proposed as an alternative to minimize the environmental effects of CO2 emissions. A key issue in the design of electrochemical systems for the reduction of CO2 is the in situ identification of intermediate surface species as well as reaction products. Copper electrodes, besides being used as cathodes in the electrochemical reduction of CO2, present surface‐enhanced Raman scattering (SERS) when properly activated. In this sense, the electrochemical reduction of CO2 over a copper electrode in the room temperature ionic liquids 1‐n‐butyl‐3‐methyl imidazolium tetrafluoroborate (BMI.BF4) was investigated by cyclic voltammetry and by in situ SERS. The cyclic voltammetries have shown that the presence of CO2 on the BMI.BF4 anticipates the reduction of BMI+ to the corresponding carbene. Fourier‐transform‐SERS spectra excited at 1064 nm and SERS spectra excited at 632.8 nm have shown vibrational signals from adsorbed CO. These SERS results indicated that CO adsorbs on the copper surface at two different surface sites. The observation of a 2275 cm−1 vibration in the SERS spectra also confirmed the presence of chemically adsorbed CO2. Other products of CO2 reduction in BMI.BF4, besides CO, were identified, including BMI carbene and the BMI‐CO2 adduct. The SERS results also suggest that the presence of a thin film of Cu2O on the copper surface anticipates the reduction of CO2 to CO, an important component of syngas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The adsorption of 2‐amino‐5‐cyanopyridine (2‐ACP) was investigated in solution at different pH values by i n situ surface‐enhanced Raman scattering (SERS) spectroscopy combined with the electrochemical method. The assignments of the main bands were first performed on the basis of the spectral features of similar compounds and with the help of density functional theory calculations. The results revealed that the adsorption and the interfacial structure of 2‐ACP on the Au electrode depended on the applied potential and the pH values of the solution. In the natural solution, 2‐ACP was adsorbed on the surface with a vertical orientation by the CN group from − 0.4 to − 1.0 V, whereas in the − 0.4 to 0.8 V range, the N atom of the pyridine ring was bound to the surface. A transition region for the reorientation of the two adsorption modes was observed from − 0.8 to − 0.4 V. A flat configuration was preferred at an extremely negative potential. A similar surface adsorption behavior was observed in the alkali environment, while the Stark effect slope decreased because of the adsorption of OH. Due to the protonation of N atom in the acidic solution, the potential region for the coexistence of two configurations ranged from − 0.4 to 0.2 V. Additionally, a similar adsorption configuration was proposed on the Au colloids at various pH values. The results revealed that the adsorption behavior became more complex on colloidal surfaces than that on a rigid electrode surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Photoinduced reactions of 9‐oxo‐6,9‐dihydro[1,2,5]selenadiazolo[3,4‐f]quinoline‐8‐carboxylic acid (SeQCA) were investigated in alkaline media (aqueous NaOH solutions) by electron paramagnetic resonance (EPR) spectroscopy, following the in situ formation of paramagnetic species. According to UV–Vis and nuclear magnetic resonance investigations, protonation (pH ≈ 11) and deprotonation (pH ≈ 13) of the imino hydrogen of the 4‐pyridone moiety has to be considered, reflected also in the different EPR spectra observed upon irradiation. Photoinduced generation of radicals was found only for carboxylate substituted SeQCA; other studied selenadiazoloquinolone derivatives, together with those substituted at the C(8) position (R = H, COOCH2CH3, COOCH3, COCH3 or CN), did not generate paramagnetic species during exposure. Consequently, photodecarboxylation was suggested as the decisive step, accompanied by the decomposition of the selenadiazole ring, resulting in the formation of ortho‐hydroxylate anions. EPR parameters elucidated from experimental EPR spectra obtained at pH ≈ 11 and pH ≈ 13 indicate the formation of oxygen‐centered radicals at the decarboxylated 4‐pyridone ring. EPR spin trapping experiments with nitromethane confirmed a very effective photoinduced electron transfer from all the selenadiazoloquinolones investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
4‐Alkyl‐2,2,6,6‐tetramethyl‐1,4,2,6‐oxaazadisilinanes RN[CH2Si(Me)2]2O [R = Me ( 1 ), i‐Pr ( 2 )] were synthesized by two methods which provided good yields up to 84%. Low temperature NMR study of compounds ( 1 ) and ( 2 ) revealed a frozen ring inversion with the energy barriers of 8.5 and 7.7 kcal/mol at 163 and 143 K, respectively, which is substantially lower than that for their carbon analog, N‐methylmorpholine. DFT calculations performed on the example of molecule ( 1 ) showed that N? Meax conformer to exist in the sofa conformation with the coplanar fragment C? Si? O? Si? C, and its N? Meeq conformer in a flattened chair conformation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the intermolecular hydrogen‐abstraction reaction of the triplet state of 4‐benzoylpyridine (4‐BPy) in 2‐propanol solvent is reported. The TR3 results reveal a rapid hydrogen abstraction (<10 ns) by the 4‐BPy triplet state (nπ*) with the 2‐propanol solvent, leading to formation of a 4‐BPy ketyl radical and an associated dimethyl ketyl radical partner from the solvent. The recombination of these two radical species occurs with a time constant about 200 ns to produce a para‐N‐LAT (light absorbing transient). The structure, major spectral features, and identification of the ketyl radical and the para‐N‐LAT coupling complex have been determined and confirmed by comparison of the TR3 results with results from density functional theory (DFT) calculations. A reaction pathway for the photolysis of 4‐BPy in 2‐propanol deduced from the TR3 results is also presented. The electron‐withdrawing effect of the heterocyclic nitrogen for 4‐BPy on the triplet state makes it have a significantly higher chemical reactivity for the hydrogen abstraction with 2‐propanol compared to the previously reported corresponding benzophenone triplet reaction under similar reaction conditions. In addition, the 4‐BPy ketyl radical reacts with the dimethyl ketyl radical to attach at the para‐N atom position of the pyridine ring to form a cross‐coupling product such as 2‐[4‐(hydroxy‐phenyl‐methylene)‐4h‐pyridin‐1‐yl]‐propan‐2‐ol instead of attacking at the para‐C atom position as was observed for the corresponding benzophenone reaction reported in an earlier study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
To study the fate of a molecular di‐μ‐oxo‐bridged trinuclear ruthenium complex, [(NH3)5Ru–O–Ru(NH3)4–O–Ru(NH3)5]6+, also known as Ru‐red, during the electro‐driven water oxidation reaction, electrochemical in situ surface enhanced Raman spectroscopy (SERS) investigations have been conducted on an electrochemically roughened gold surface in acidic condition. It was previously described that on a basal plane pyrolitic graphite electrode in 0.1 M H2SO4 aqueous solution, Ru‐red undergoes one electron oxidative conversion into a stable higher oxidation state ruthenium complex, Ru‐brown, at <1.0 V (vs normal hydrogen electrode (NHE)), and this leads to water oxidation and dioxygen release, but the fate of Ru‐red during electrochemistry was not studied in much detail. In this investigation, Ru‐red dispersed in acid electrolyte and immobilized on a roughened gold electrode without Ru‐red in solution has been subjected to anodic controlled potential experiments, and in situ SERS was carried out at various potentials in succession. The electrochemical SERS data obtained for Ru‐red are also compared with in situ SERS results of an electrodeposited ruthenium oxide thin film on the Au disk. Our study suggests that on a gold electrode in sulfuric acid solution containing Ru‐red, one electron oxidative conversion of Ru‐red to a higher oxidation state ruthenium compound, Ru‐brown, occurs at ca. 0.74 V (vs NHE), as supported by the electrochemical in situ SERS experiments. Moreover, at higher potentials and on Au disk, the Ru‐red / Ru‐brown are not stable and slowly decompose or electro‐oxidize leading to deactivation of the tri‐ruthenium catalytic system in acidic medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Nucleophilic substitution and dehydrochlorination reactions of a number of the ring‐substituted 1‐(arylsulfonyl)‐2‐R‐4‐chloro‐2‐butenes are studied both experimentally and theoretically. The developed synthetic procedures are characterized by a general rapidity, cheapness, and simplicity providing moderate to high yields of 1‐arylsulfonyl 1,3‐butadienes (48–95%), 1‐(arylsulfonyl)‐2‐R‐4‐(N,N‐dialkylamino)‐2‐butenes (31–53%), 1‐(arylsulfonyl)‐2‐R‐2‐buten‐4‐ols (37–61%), and bis[4‐(arylsulfonyl)‐3‐R‐but‐2‐enyl]sulfides (40–70%). The density functional theory B3LYP/6‐311++G(2d,2p) calculations of the intermediate allylic cations in acetone revealed their high stability occurring from a resonance stabilization and hyperconjugation by the SO2Ar group. The reactivity parameters estimated at the bond critical points of the diene/allylic moiety display a high correlation (R2 > 0.97) with the Hammett (σp) constants. 1‐Arylsulfonyl 1,3‐butadienes are characterized by a partly broken π conjugated system, which follows from analysis of the two‐centered delocalization (δ) and localization (λ) index values. The highest occupied molecular orbital energies of 1‐arylsulfonyl 1,3‐butadienes are lower than those of 1,3‐butadiene explaining their low reactivity towards the Diels–Alder condensation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号