首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An understanding of intramolecular charge transfer in 2‐D linearly conjugated and cross‐conjugated compounds is necessary for the rational design of molecular electronics, improved solar energy devices, semi‐conducting polymers, and materials with nonlinear optical properties. In this work, the femtosecond transient absorption spectra and kinetics of several donor‐bridge‐acceptor compounds containing cross‐conjugated or linearly conjugated bridging groups were obtained. The veratrole group was used as the donor, and the phthalimide group was used as an acceptor. 2‐D conjugation was achieved by involving two bridging groups arranged cyclically between the donor and acceptor. The donor and acceptor were bridged by m‐phenylene in the cross‐conjugated compounds or 2,5‐thiophene in the linearly conjugated compounds. We found slower charge separation times and slower charge recombination times in the compounds containing cyclic cross‐conjugated bridging groups than in those containing the cyclic linearly conjugated groups in polar solvent. Charge separation rates that were found to be dependent on solvent were observed in the donor‐bridge‐acceptor compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Solvent effects on the electronic absorption spectra of donor‐substituted 11,11,12,12‐tetracyano‐9, 10‐anthraquinodimethanes (TCAQs) 1 – 3 have been investigated in 32 well‐selected solvents. These compounds were chosen as model structures for charge‐transfer chromophores featuring second‐ and third‐order nonlinear optical properties. The resulting data were evaluated by means of theoretical models and (semi)empirical correlations determining the optical properties related to electron distribution and polarizability. We found that solvent effects on a polar D‐π‐A system do not depend on the donor/acceptor orientation (HOMO/LUMO localization) but especially on the length of the π‐system in between. The observed solvent effects are described with high accuracy by the applied theoretical models and linear combinations of physical quantities. Solvent polarization, permanent dipole moment, and molar volume substantially affect the longest‐wavelength absorption maxima. Solvent‐induced bathochromic shift resulting from the solvent polarity is described with high accuracy by the Born function. On the other hand, hypsochromic effects of the solvent permanent dipole moment are caused due to the slower reorganization of molecular dipoles compared with the rate of excitation. Solvent polarizability shifts the longest‐wavelength absorption maxima bathochromically with increasing length of the π‐conjugated system. Whereas this effect could be suitably described by the Onsager‐induced polarizability, the orientation polarizability was not found to be important. The solvent molar volume as a hypsochromic shift‐inducing factor is only relevant if the size of the solute and solvent molecules are comparable. If the size of the solute is considerably larger than that of the solvent molecules, the solvent behaves as a ‘shape continuum.’ Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The photon echo (PE) spectroscopy and single‐molecule spectroscopy (SMS) may be combined to give a very powerful tool for comprehensive study of low‐temperature dynamics in dye‐doped disordered solids (polymers, glasses). At the same time, this type of studies are likely to reveal discrepancies when comparing characteristic times of optical dephasing T2 and single‐molecule zero‐phonon spectral lines (ZPL) broadening obtained from PE and SMS, correspondingly, for tetra‐tert‐butylterrylene in polyisobutylene in the temperature range of a few–dozen of Kelvins [see Phys. Status Solidi B 241 , 3480 and 3487 (2004)]. Inexplicably, PE‐experiments demonstrated T2‐times to be much shorter than it is sufficient to cause the corresponding ZPL broadening. Here we experimentally solve this problem and show that at T = 4.5–15 K the incoherent PE gives T2‐times which correspond to the narrowest SM ZPL. On the SM‐level there is a pronounced additional ZPL‐broadening due to spectral diffusion processes which are strongly dependent on the characteristics time of the measurement (tens of nanoseconds for PE and seconds for SMS). There is also a broad distribution of ZPL spectral widths for different SMs due to different local environments, that contribute differently to both the optical dephasing and the spectral diffusion processes, but always in addition to the value of inverse optical dephasing times measured using a PE technique.

  相似文献   


4.
Here, we study a low (less than 0.1 µg/ml) concentration aqueous suspension of single‐wall carbon nanotubes (SWNTs) by Raman‐induced Kerr effect spectroscopy (RIKES) in the spectral bands 0.1–10 and 100–250 cm−1. This method is capable of carrying out direct investigation of SWNT hydration layers. A comparison of RIKES spectra of SWNT aqueous suspension and that of milli‐Q water shows a considerable growth in the intensity of low wavenumber Raman modes. These modes in the 0.1–10 cm−1 range are attributed to the rotational transitions of H2O2 and H2O molecules. We explain the observed intensity increase as due to the production of hydrogen peroxide and the formation of a low‐density depletion layer on the water–nanotube interface. A few SWNT radial breathing modes (RBM)are observed (ωRBM = 118.5, 164.7 and 233.5 cm−1) in aqueous suspension, which allows us to estimate the SWNT diameters (∼2.0, 1.5, and 1 nm, respectively). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The 1,3‐C–H insertion of magnesium carbenoid and related species was investigated via density functional theory (DFT) calculations. The 1,3‐C–H insertion occurred according to an SN2‐like mechanism wherein the nucleophilic C–H bond attacked the electrophilic carbenoid carbon atom. The activation energies for the 1,3‐C–H insertion of (1‐chloropropyl)magnesium chloride, (1‐methoxypropyl)magnesium chloride, and [1‐(methylthio)propyl]magnesium chloride were 20.0, 33.8, and 47.1 kcal/mol, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Solvolysis rates of 2‐(aryldimethylsilyl)‐1‐methylethyl and 2‐(aryldimethylsilyl)‐1‐tert‐butylethyl trifluoroacetates were determined conductimetrically in 60% (v/v) aqueous ethanol. The effects of aryl substituents at the silicon atom on the solvolysis rates at 50 °C were correlated with parameters of r+ = 0.15 with the Yukawa–Tsuno equation, giving ρ values of ?1.5 for both secondary α‐Me and αtert‐Bu systems. The ρ values for those secondary systems are less negative than ?1.75 for the 2‐(aryldimethylsilyl)ethyl system that proceeds by the Eaborn (non‐vertical) mechanism, while they are distinctly more negative than ?0.99 for 2‐(aryldimethylsilyl)‐1‐phenylethyl system that should proceed by the Lambert (vertical) mechanism. There was a fairly linear relationship between the reaction constants (ρ) for the β‐silyl substituent effects and the solvolysis reactivities for a series of β‐silyl substrates. The solvolyses of the α‐Me and tert‐Bu substrates proceed through the transition state (TS) with an appreciable degree of the β‐silyl participation, close to the Eaborn (non‐vertical) TS rather than to the Lambert (vertical) TS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Density functional theory computations at B3LYP and X3LYP levels were performed for ring openings of substituted gem‐dibromospiropentanes (R = ―H, ―Cl, ―Br, ―CH3, ―SiH3, ―OH, ―OCH3, ―CF3, ―BF2, and ―SH) to related allenes. The conversion of spiropentanoids 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j to the corresponding allenes 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j can proceed in both concerted and stepwise mechanism except for R = ―H. Both ring‐opening mechanisms have similar activation energy barriers to open the spiropentanylidene ring and generate the structure of allene at all theoretical levels used herein. Generally the π electron‐donating group (―OH or ―SH) decreases the activation barrier for the follow‐up reaction of 1‐bromo‐1‐lithiospiropentanoid and free spiropentanylidene. Hence, both bearing electron‐donating substituents are more reactive than those with electron‐withdrawing group, and the first one to open the ring to the LiBr–allene complex does so more readily than the second. The sEDA index used to measure sigma‐electron excess/deficiency of the cyclopropylidene ring is mutually correlated for the studied systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Effect of the number and positions of the methoxycarbonyl substituents in 2‐phosphaindolizine on the feasibility of its Diels–Alder (DA) reaction with 1,3‐butadiene has been investigated theoretically at the density functional theory (DFT) level. Among the series of four differently substituted 2‐phosphaindolizines, 3‐methoxycarbonyl‐2‐phosphaindolizine does not undergo the DA reaction due to the highest activation barrier (29.49 kcal mol?1) and endothermicity, whereas the activation barrier of the corresponding reaction of 1,3‐bis(methoxycarbonyl)‐2‐phosphaindolizine is lowest (22.43 kcal mol?1) with exothermicity making it possible to occur. This reactivity trend is corroborated by FMO energy gaps as well as by global electrophilicity powers of the reactants. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The two conceptual systems of organic homologous compounds and homo‐rank compounds give insight into the influence of structures on the properties of mono‐substituted alkanes Xi–(CH2)j–H from the transverse (change of repeating unit number j of CH2) and longitudinal (change of functional group Xi) perspectives, respectively. This paper aims to combine the organic homo‐rank compounds approach together with the homologous compounds approach to explore the property change rules of mono‐substituted alkanes involving various substituents. Firstly, based on the concept of organic homologous compounds, the properties of mono‐substituted straight‐chain alkane homologues were linearly correlated to the two‐thirds power of the number of carbon atoms (N2/3) in alkyl, and regression equations such as Q = A + BN2/3 were obtained. The regression coefficients A and B vary with different substituents Xi, so coefficients A and B were employed to characterize the structural information of substituent Xi. The structural features of alkyls (–(CH2)j–H, that is, –CjH2j+1) were described by the polarizability effect index (PEI(R)) and vertex degree–distance index (VDI). Then based on four parameters A, B, PEI(R), and VDI, quantitative structure–property relationship models were built for the boiling points (Bp) and refractive indexes (nD) of each mono‐substituted alkane homo‐rank series, where j = 3–10 and the substituents Xi involve F, Cl, Br, I, NO2, CN, NH2, COOH, CHO, OH, SH, and NC. Good results indicate that the combination of an organic homo‐rank compounds method and a homologous compounds method has exhibited obvious advantages over traditional methods in the quantitative structure–property relationship study of mono‐substituted alkanes concerning various substituents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Three derivatives of alkyl anthracene covalently bonded to aza‐18‐crown‐6 at the nitrogen position, anthracene(CH2)n, (n = 1–3) which act as an on–off fluorogenic photoswitch have been theoretically studied using a computational strategy based on density functional theory at B3LYP/6‐31 + G(d,p) method. The fully optimized geometries have been performed with real frequencies which indicate the minima states. The binding energies, enthalpies and Gibbs free energies have been calculated for aza‐18‐crown‐6 ( L ) and their metal complexes. The natural bond orbital analysis is used to explore the interaction of host–guest molecules. The absorption spectra differences between L and their metal ligands, the excitation energies and absorption wavelength for their excited states have been studied by time‐dependent density functional theory with the basis set 6‐31 + G(d,p). These fluorescent sensors and switchers based on photoinduced electron transfer mechanism have been investigated. The PET process from aza‐crown ether to fluorophore can be suppressed or completely blocked by the entry of alkali metal cations into the aza‐crown ether‐based receptor. Such a suppression of the PET process means that fluorescence intensity is enhanced. The binding selectivity studies of the aza‐crown ether part of L indicate that the presence of the alkali metal cations Li+, Na+ and K+ play an important role in determining the internal charge transfer and the fluorescence properties of the complexes. In addition, the solvent effect has been investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
2‐Ethylhexyl 4‐methoxycinnamate (EHMC) is a very commonly used UVB filter that is known to isomerize from the (E) to the (Z) isomer in the presence of light. In this study, we have performed high level quantum chemical calculations using density functional theory (DFT) with the B3LYP density functional and extended basis sets to study the gas‐phase molecular structure of EHMC and its energetic stability. Calculations were also performed for related smaller molecules cinnamic acid and 4‐methoxycinnamic acid. Charge delocalization has been analyzed using natural charges and Wiberg bond indexes within the natural bond orbital analysis and using nucleus independent chemical shifts. Density functional theory calculations reveal that the (E) isomer of EHMC is more stable than the (Z) by about 20 kJ mol?1 in both the gas and aqueous phases. The enthalpy of formation in the gas phase of (E)‐EHMC was derived from an isodesmic bond separation reaction. Long‐range corrected DFT calculations in implicit water were made in order to understand the excited state properties of the (E) and (Z) isomers of EHMC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
All possible types of Diels–Alder cycloadditions of 1,3‐cis‐butadiene to C60 (2 in total) and to C70 (8 in total) were theoretically investigated by the M06‐2X density functional method in gas phase and solutions. An intermediate between the reactant and the transition state was located for each reaction. These intermediates except one have not been experimentally or theoretically reported before. The reactivities of the 10 reactions in both the gas phase and solutions were systematically compared based on the calculated results. The present conclusion agrees with the experimental observations and partly disagrees with the previously theoretical conclusion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The Ru(III)/Os(VIII)/Pd(II)/Pt(IV)‐catalysed kinetics of oxidation of glycyl–glycine (Gly‐Gly) by sodium N‐chloro‐p‐ toluenesulfonamide (chloramine‐T; CAT) in NaOH medium has been investigated at 308 K. The stoichiometry and oxidation products in each case were found to be the same but their kinetic patterns observed are different. Under comparable experimental conditions, the oxidation‐kinetics and mechanistic behaviour of Gly‐Gly with CAT in NaOH medium is different for each catalyst and obeys the underlying rate laws:
  • Rate = k [CAT]t [Gly‐Gly]0 [Ru(III)][OH?]x
  • Rate = k [CAT]t[Gly‐Gly]x [Os(VIII)]y[OH?]z
  • Rate = k [CAT]t[Gly‐Gly]x [Pd(II)][OH?]y
  • Rate = k [CAT]t[Gly‐Gly]0 [Pt(IV)]x[OH?]y
Here, and x, y, z < 1 in all the cases. The anion of CAT, CH3C6H4SO2NCl?, has been postulated as the common reactive oxidising species in all the cases. Under comparable experimental conditions, the relative ability of these catalysts towards oxidation of Gly‐Gly by CAT are in the order: Os(VIII) > Ru(III) > Pt(IV) > Pd(II). This trend may be attributed to the different d‐electronic configuration of the catalysts. Further, the rates of oxidation of all the four catalysed reactions have been compared with uncatalysed reactions, under identical experimental conditions. It was found that the catalysed reaction rates are 7‐ to 24‐fold faster. Based on the observed experimental results, detailed mechanistic interpretation and the related kinetic modelling have been worked out for each catalyst. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The effects of substituents on the stability of 4‐substituted(X) cub‐1‐yl cations ( 2 ), as well as the benchmark 4‐substituted(X) bicyclo[2.2.2]oct‐1‐yl cation systems ( 7 ), for a set of substituents (X = H, NO2, CN, NC, CF3, COOH , F, Cl, HO, NH2, CH3, SiH3, Si(CH3)3, Li, O?, and NH) covering a wide range of electronic substituent effects were calculated using the DFT theoretical model at the B3LYP/6‐311 + G(2d,p) level of theory. Linear regression analysis was employed to explore the relationship between the calculated relative hydride affinities (ΔE, kcal/mol) of the appropriate isodesmic reactions for 2 / 7 and polar field/group electronegativity substituent constants (σF and σχ, respectively). The analysis reveals that the ΔE values of both systems are best described by a combination of both substituent constants. This highlights the distinction between through‐space and through‐bond electronic influences characterized by σF and σχ, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Excitation wavelengths of 282.4, 273.9 (A band), 252.7, 239.5 and 228.7 nm (B band) resonance Raman spectra were acquired for di‐2‐pyridylketone, and density functional calculations were carried out to help in the elucidation of the photo relaxation dynamics of A‐band and B‐band electronic transitions. The resonance Raman spectra show that the intensity pattern of the A band presents great difference from that of the B band, which indicate that the short‐time A‐band (S0→S4) photo relaxation dynamics have substantial difference from that of B band (S0→S10) . The overall picture of short‐time dynamics and the vibronic coupling mechanisms are interpreted using Albrecht's theory. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
We studied the cleave of bis(p‐nitrophenyl) phosphate (BNPP) over a pH range of 7.0–12.0 in the presence of cationic micelles of cetyldiethylethanolammonium bromide, cetyldimethylethanolammonium bromide, cetylpyridinium bromide, cetyltrimethylammonium bromide, and cetylpyridinium chloride by using different α‐nucleophiles, viz acetohydroxamate, benzohydroxamate, salicylhydroxamate, butane‐2,3‐dione monooximate, and α‐benzoin oximate ions. With the use of α‐nucleophiles in cationic micellar media, the hydrolytic cleavage of BNPP was found to be approximately 105‐fold faster than its spontaneous hydrolysis. All reactions followed pseudo‐first‐order kinetics. The effect of various concentrations of cationic micelles for the reaction of BNPP and α‐nucleophiles has been studied. The variation of kobs values of the reactions depends on the micellar structure, that is, head groups, hydrophobic tail length, and counter ion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The effects of substituents on the stability of 3‐substituted(X) bicyclo[1.1.1]pent‐1‐yl cations (3) and 4‐substituted(X) bicyclo[2.2.1]hept‐1‐yl cations (4), for a set of substituents (X = H, NO2, CN, NC, CF3, CHO, COOH , F, Cl, HO, NH2, CH3, SiH3, Si(CH3)3, Li, O?, and NH3+) covering a wide range of electronic substituent effects were calculated using the DFT theoretical model at the B3LYP/6‐311 + G(2d,p) and B3LYP/6‐31 + G (d) levels of theory, respectively. Linear regression analysis was employed to explore the relationship between the calculated relative hydride affinities (ΔE, kcal/mol) of the appropriate isodesmic reactions for 3/4 and polar field/group electronegativity substituent constants (σF and σχ, respectively). The analysis reveals that the ΔE values for both systems are best described by a combination of both substituent constants. The result highlights the importance of the σχ dependency of charge delocalization in these systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The support effect is an important issue in heterogeneous catalysis. A systematic density functional theory computational study is reported here to better understand the C–H bond activation steps in the reaction between C2H6 and a model silica‐supported Ni3O3 cluster, as well as that between C2H6 and an unsupported Ni3O3 cluster. Two mechanisms, namely, a radical mechanism (denoted as mechanism A) and a concerted mechanism (denoted as mechanism B) were examined. Both of these mechanisms contain two steps. For the C–H bond activation taking place via mechanism A, the involvement of the model silica support does not change the most favorable pathway significantly; however, it does result in a modest increase in the reaction barrier and the overall Gibbs energy change. For the C–H bond activation taking place via mechanism B, the involvement of the model silica support leads to an increase in the reaction barrier in the first step. The product of this step has a noticeable difference in the structures for the Ni3O3 moiety in the unsupported and model silica‐supported systems. The result of charge analysis shows that there is no noticeable charge transfer between the silica support and Ni3O3 when they are in the starting reactants, while there is an electron withdrawal from Ni3O3 by the silica support when they are in transition states, intermediates, or products. The results here provide deeper insights into the support effect on the C–H bond activation of lower alkanes on supported transition metal catalysts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号