首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acid urethane oligodimethacrylate based on poly(ethylene glycol) was synthesized and used in the preparation of hybrid composites containing silsesquioxane sequences and titania domains formed through sol‐gel reactions along with silver/gold nanoparticles (Ag/Au NPs) in situ photogenerated during the UV‐curing process. The photopolymerization kinetics studied by Fourier transform infrared spectroscopy and photoDSC showed that the photoreactivity of the investigated formulations depends on the amount of titanium butoxide (5–20 wt %) added in the system subjected to UV irradiation. The introduction of 1 wt % AgNO3/AuBr3 in formulations slightly improved the degree of conversion but diminished the polymerization rates. The formation of hybrid materials comprising predominantly amorphous TiO2/SiO2 NPs, with or without Ag/Au NPs, was confirmed through specific analyses. The evaluation of photocatalytic activity demonstrated that the synthesized hybrid films are suitable for the complete removal of organic pollutants (phenolic compounds) from water under UV irradiation (200–350 min) at low intensity (found in the solar radiation). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1189–1204  相似文献   

2.
A series of N‐alkyl/aryl carbazole 3,6‐substituted arylene trifluorovinyl ether (TFVE) monomers were synthesized in high purity and yield from a concise four‐step synthesis using carbazole as a starting material. Condensate‐free, step‐growth chain extension of the monomers afforded perfluorocyclobutyl (PFCB) arylene ether homo‐ and copolymers as solution processable, optically transparent blue‐light emissive materials. Arylene TFVE monomers and conversion to PFCB arylene ether polymers were structurally elucidated and purity confirmed by high resolution mass spectroscopy, NMR (1H, 13C, and 19F) spectroscopy, gel permeation chromatography, and attenuated total reflectance Fourier transform infrared analysis. Thermal analysis by differential scanning calorimetry and thermogravimetric analysis revealed glass transition temperatures >150 °C and onset of decomposition in nitrogen >410 °C with 40 wt % char yield up to 900 °C. Optical and electrochemical studies included solution (tetrahydrofuran) and solid state (spin cast thin film) UV–vis/fluorescence spectroscopy and cyclic voltammetry which showed structure dependence of these blue emissive systems on the nature of the N‐alkyl/aryl carbazole substitution in either homo‐ or copolymer configurations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 552–560  相似文献   

3.
Main chain polymeric benzophenone photoinitiator (PBP) was synthesized by using “Thiol‐ene Click Chemistry” and characterized with 1H NMR, FTIR, UV, and phosphorescence spectroscopies. PBP as a polymeric photoinitiator presented excellent absorption properties (ε294 = 28,300 mol?1L?1cm?1) compared to the molecular initiator BP (ε252 = 16,600 mol?1L?1cm?1). The triplet energy of PBP was obtained from the phosphorescence measurement in 2‐methyl tetrahydrofurane at 77 K as 298.3 kJ/mol and according to phosphorescence lifetime, the lowest triplet state of PBP has an n‐π* nature. Triplet–triplet absorption spectrum of PBP at 550 nm following laser excitation (355 nm) were recorded and triplet lifetime of PBP was found as 250 ns. The photoinitiation efficiency of PBP was determined for the polymerization of Hexanedioldiacrylate (HDDA) with PBP and BP in the presence of a coinitiator namely, N‐methyldiethanolamine (MDEA) by Photo‐DSC. The initiation efficiency of PBP for polymerization of HDDA is much higher than for the formulation consisting of BP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
Thermally stable core–shell gold nanoparticles (Au NPs) with highly grafted polymer shells were synthesized by combining reversible addition‐fragmentation transfer (RAFT) polymerization and click chemistry of copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). First, alkyne‐terminated poly(4‐benzylchloride‐b‐styrene) (alkyne‐PSCl‐b‐PS) was prepared from the alkyne‐terminated RAFT agent. Then, an alkyne‐PSCl‐b‐PS chain was coupled to azide‐functionalized Au NPs via the CuAAC reaction. Careful characterization using FT‐IR, UV–Vis, and TGA showed that PSCl‐b‐PS chains were successfully grafted onto the Au NP surface with high grafting density. Finally, azide groups were introduced to PSCl‐b‐PS chains on the Au NP surface to produce thermally stable Au NPs with crosslinkable polymer shell ( Au‐PSN3b‐PS 1 ). As the control sample, PS‐b‐PSN3‐coated Au NPs ( Au‐PSN3b‐PS 2 ) were made by the conventional “grafting to” approach. The grafting density of polymer chains on Au‐PSN3b‐PS 1 was found to be much higher than that on Au‐PSN3b‐PS 2 . To demonstrate the importance of having the highly packed polymer shell on the nanoparticles, Au‐PSN3b‐PS 1 particles were added into the PS and PS‐b‐poly(2‐vinylpyridine) matrix, respectively. Consequently, it was found that Au‐PSN3b‐PS 1 nanoparticles were well dispersed in the PS matrix and PS‐b‐P2VP matrix without any aggregation even after annealing at 220 °C for 2 days. Our simple and powerful approach could be easily extended to design other core–shell inorganic nanoparticles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
In a continuation of research on chemically bonded photoinitiators comprising a structure of planar N‐phenylmaleimide (NPMI) and benzophenone (BP), a novel, highly efficient, polymerizable, sulfur‐containing photoinitiator, 4‐[(4‐maleimido)thiophenyl]benzophenone (MTPBP), was synthesized by the introduction of an NPMI group into BP. Another chemically bonded photoinitiator, 4‐[(4‐maleimido)phenoxy]benzophenone (MPBP), was selected to evaluate its photoefficiency. The results showed that MTPBP possessed a greatly redshifted UV maximal absorption and a very weak fluorescence emission. Electron spin resonance spectra indicated that the C? S bond in its molecule underwent photolysis reactions to generate radicals to initiate the polymerization. Three representative types of different functionality monomers—methyl methacrylate, 1,6‐hexanediol diacrylate, and trimethylolpropane triacrylate—were chosen to be initiated through dilatometry and differential scanning photocalorimetry with unsaturated tertiary amine N,N‐dimethylaminoethyl methacrylate as the coinitiator. The results showed surprisingly high efficiency of MTPBP due to the mutual influence between NPMI and BP as in their physical mixtures and photolysis reactions at the C? S bond. Both MPBP and MTPBP behaved with similar regularity toward different monomers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3738–3750, 2006  相似文献   

6.
Two functional monomers, methacrylic acid 4‐(2‐benzoxazol)‐benzyl ester (MABE) containing the benzoxazole group and 4‐(2‐(9‐anthryl))‐vinyl‐styrene (AVS) containing the anthracene group were synthesized by rational design. The MABE was polymerized via atom transfer radical polymerization (ATRP) using ethyl 2‐bromoisobutyrate (EBIB) as initiator in CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) catalyst system; block copolymers poly(MABE‐b‐AVS) was obtained, which was conducted by using poly(MABE) as macro‐initiator, AVS as the second monomer, and CuBr/PMDETA as catalyst. The constitute of two monomers in block copolymers poly(MABE‐b‐AVS) by ATRP could be adjusted, that is the constitute of the benzoxazole group and the anthracene group could be controlled in AB‐type block copolymers. Moreover, the fluorescent properties of homopolymers poly(MABE) and block copolymers poly(MABE‐b‐AVS) were discussed herein. With the excitation at λex = 330 nm, the fluorescent emission spectrum of poly(MABE) solution showed emission at 375 nm corresponding to the benzoxazole‐based part; with the same excitation, the fluorescent emission spectrum of poly(MABE‐b‐AVS) solution showed a broad peek at 330–600 nm when the monomer AVS to the total monomers mole ratio was 0.31, and the fluorescent emission spectrum of poly(MABE‐b‐AVS) in film state only showed one peak at 525 nm corresponding to the anthracene‐based unit that indicated a complete energy transfer from the benzoxazole group to the anthracene group. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3894–3901, 2007  相似文献   

7.
Two new extended self‐polymerizable AB monomers, N‐(4‐fluorobenzoyl)‐4‐amino‐4′‐hydroxydiphenylether and N‐(4‐fluorobenzoyl)‐4‐amino‐4′‐hydroxybiphenyl, were prepared. The monomers were homopolymerized and copolymerized to high‐molecular‐weight, linear poly(arylether amides) in N‐methylpyrrolidone (NMP)/toluene in the presence of potassium carbonate at elevated temperature. The polymers retained NMP up to 200 °C. Samples containing small amounts of the solvent (5–10 wt %) were soluble in polar aprotic solvents. However, after complete removal of the NMP, the polymers were only soluble in strong acids such as sulfuric acid and methanesulfonic acid (MSA). The polymers, which had intrinsic viscosities of 0.57–1.49 dL/g (30.1 ± 0.1 °C in MSA), were semicrystalline with melting temperatures above 400 °C. Two new self‐polymerizable AB2 amide monomers, N,N′‐bis(4‐fluorobenzoyl)‐3,4‐diamino‐4′‐hydroxydiphenylether and N,N′‐bis(4‐fluorobenzoyl)‐3,5‐diamino‐4′‐hydroxybenzophenone, were also prepared and polymerized to give a hyperbranched poly(arylether amide) and a hyperbranched poly(aryletherketone) amide. The arylfluoride‐terminated, amorphous polymers had intrinsic viscosities of 0.34 and 0.24 dL/g (30.0 ± 0.1 °C in m‐cresol), glass‐transition temperatures of 210–269 °C, and were soluble in a wide variety of organic solvents. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis indicated that the components of the low‐molecular‐weight fractions contained cyclic structures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2374–2389, 2003  相似文献   

8.
This article presents a simple and facile method to fabricate thermoresponsive polymer‐grafted silica particles by direct surface‐initiated photopolymerization of N‐isopropylacrylamide (NIPAM). This method is based on silica particles bearing thiol functionalities, which are transformed into thiyl radicals by irradiation with UV light to initiate the polymerization of NIPAM in aqueous media at room temperature. The photopolymerization of NIPAM could be applied to smaller thiol‐functionalized particles (~48 nm) as well as to larger particles (~692 nm). Hollow poly(NIPAM) capsules could be formed after etching away the silica cores from the composite particles. It is possible to produce tailor‐made composite particles or capsules for particular applications by extending this approach to other vinyl monomers. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1260–1267  相似文献   

9.
This work reports on the synthesis of three acid oligosiloxane‐urethane dimethacrylates and their use to obtain hybrid nanocomposite films, in which the presynthesized silver nanoparticles (NPs) were incorporated before photopolymerization, or produced via in situ photoreduction of the silver nitrate (AgNO3) precursor into the formulation, without any conventional reducing agent. All samples were characterized by 1H NMR, FT‐infrared and UV spectroscopies, photodifferential scanning calorimetry (photo‐DSC), transmission electron microscopy (TEM), and energy‐dispersive X‐ray (EDX) analysis. Fourier transformed infrared spectroscopy and photo‐DSC results showed that dimethacrylates having hydrophilic segment of poly(ethylene oxide) type in structure are more reactive than the acid oligosiloxane dimethacrylate. When another urethane dimethacrylate is taken as a comonomer, the photopolymerization rate (0.112–0.132 s?1) and the degree of conversion (82–93%) significantly increased. Experimental evidence of the existence of nanosilver into the polymer matrix generated upon UV irradiation has been supported by UV spectroscopy, EDX and TEM analysis, the last allowing a visualization of the formation of silver NPs with size between 2 and 15 nm. Mechanical parameters and wettability of the photocrosslinked films are also discussed in the prospect of further potential applications in the biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Four novel A‐B condensation monomers containing an amine and a carboxylic acid function are described, along with their polymerization to give main chain aromatic poly(amide urea)s. The monomers, and the polymer structural unit, are N,N′‐diphenylurea derivatives. When comparing wholly aromatic polyamides, or aramids, with the poly(amide urea)s described herein, we find that the chemical resistance to hydrolysis of the later polymers increases and their thermal resistance is diminished due to the main chain urea groups, whereas their water uptake is not greatly modified. The most striking result of the new poly(amide urea)s is their outstanding mechanical resistance: their Young's modulus rises as high as 5.5 GPa and their tensile strengths as high as 170 MPa for unoriented films prepared at laboratory scale by casting. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5398–5407, 2007  相似文献   

11.
Three carbazole‐containing methacrylic monomers, 2‐(N‐carbazolyl)ethyl methacrylate(CzEMA), 6‐(N‐carbazolyl)hexyl methacrylate(CzHMA), and 11‐(N‐carbazolyl)undecyl methacrylate (CzUMA), and their saturated model compounds, 2‐(N‐carbazolyl)ethyl isobutyrate, 6‐(N‐carbazolyl)hexyl isobutyrate, and 11‐(N‐carbazolyl)undecyl isobutyrate, were synthesized and polymerized. UV absorption spectra showed that there was either negligible or no interaction between the carbon–carbon double bond of the methacrylic group and the carbazolyl chromophore moiety in the ground state for these monomers. Fluorescence spectra of the monomers, their model compounds, and the polymers were recorded in the solvents with different polarities. CzEMA exhibited the fluorescence structural self‐quenching effect (SSQE), but CzHMA and CzUMA did not. In addition, the SSQE of CzEMA depended strongly on the polarity of the solvents. That is, the stronger the polarity of a solvent was, the more obvious the SSQE was. Therefore, the SSQE of CzEMA mainly was caused by the intramolecular charge‐transfer interaction between the excited electron‐donating carbazolyl chromophore moiety and the electron‐accepting carbon–carbon double bond of the methacrylic group. This was confirmed by the fluorescence‐decay curves and the fluorescence lifetimes of the monomers, their model compounds, and the polymers. The monomers, their model compounds, and the polymers initiated the photopolymerization of methyl methacrylate (MMA) upon UV irradiation. CzEMA showed greater initiation ability than the other two monomers and their model compounds; this was ascribed to the photoinduced intramolecular charge‐transfer interaction. The higher initiation efficiency of the homopolymers compared to that of the copolymers with MMA was interpreted as the result of singlet energy migration of the excited carbazolyl chromophores along the polymer chains. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 679–688, 2000  相似文献   

12.
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006  相似文献   

13.
We report on pH‐responsive and thermoresponsive hybrid materials based on the assembly of gold nanorods, Au NRs, into multiresponsive, crosslinked copolymer microgel particles. These microgel particles were prepared by the surfactant‐free emulsion polymerization of N‐isopropylacrylamide and acrylic acid using N, N′‐methylene bis‐acrylamide as a crosslinker, which produces particles measuring approximately 160 nm that are interconnected to one other. Cetyltrimethyl ammonium bromide‐stabilized Au NRs were also prepared independently using a seed‐mediated growth method and then loaded into swollen, deprotonated, acrylic acid‐containing microgel particles using the electrostatic interactions between the oppositely charged particles. Transmission electron micrographs of the as‐prepared hybrid Au NR–microgel particles confirmed that the Au NRs were attached to the surface of the microgel particles. The size‐dependent temperature‐responsive characteristics of the hybrid microgel particles were studied by dynamic light scattering, and it was found that as the temperature increased across the phase transition temperature, the particle size decreased to 56% of the original volume. The thermoresponsive and pH‐responsive optical properties of the hybrid microgel particles were also systematically investigated. The thermo‐ and pH‐induced shrinkage of the microgel led to an increase in the UV–vis absorption intensity and caused a significant blue shift in the longitudinal surface plasmon bands of the Au NRs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Poly(styrene‐bN‐isopropylacrylamide) (PSt‐b‐PNIPAM) with dithiobenzoate terminal group was synthesized by reversible addition‐fragmentation‐transfer polymerization. The dithiobenzoate terminal group was converted into thiol terminal group with NaBH4, resulting thiol‐terminated PSt‐b‐PNIPAM‐SH. After PSt‐b‐PNIPAM‐SH assembled into core‐shell micelles in aqueous solution, gold nanoparticles were in situ surface‐linked onto the micelles through the reduction of gold precursor anions with NaBH4. Thus, temperature responsive core/shell micelles of PSt‐b‐PNIPAM surface‐linked with gold nanoparticles (PSt‐b‐PNIPAM‐Au micelles) were obtained. Transmission Electron Microscopy revealed the successful linkage of gold nanoparticles and the dependence of the number of gold nanoparticles per micelle on the molar ratio of HAuCl4 to thiol group of PSt‐b‐PNIPAM. Dynamic Light Scattering analysis demonstrated thermo‐responsive behavior of PSt‐b‐PNIPAM‐Au micelles. Changing the temperature of PSt‐b‐PNIPAM‐Au micelles led to the shrinkage of PNIPAM shell and allowed to tune the distance between gold nanoparticles. Ultraviolet–visible (UV–vis) spectroscopy clearly showed the reversible modulation of UV–vis absorbance of PSt‐b‐PNIPAM‐Au micelles upon heating and cooling. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5156–5163, 2007  相似文献   

15.
Although catalytic processes mediated by surface plasmon resonance (SPR) excitation have emerged as a new frontier in catalysis, the selectivity of these processes remains poorly understood. Here, the selectivity of the SPR‐mediated oxidation of p‐aminothiophenol (PATP) employing Au NPs as catalysts was controlled by the choice of catalysts (Au or TiO2‐Au NPs) and by the modulation of the charge transfer from UV‐excited TiO2 to Au. When Au NPs were employed as catalyst, the SPR‐mediated oxidation of PATP yielded p,p‐dimercaptobenzene (DMAB). When TiO2‐Au NPs were employed as catalysts under both UV illumination and SPR excitation, p‐nitrophenol (PNTP) was formed from PATP in a single step. Interestingly, PNTP molecules were further reduced to DMAB after the UV illumination was removed. Our data show that control over charge‐transfer processes may play an important role to tune activity, product formation, and selectivity in SPR‐mediated catalytic processes.  相似文献   

16.
A doubly hydrophilic triblock copolymer of poly(N,N‐dimethylamino‐2‐ethyl methacrylate)‐b‐Poly(ethylene glycol)‐b‐poly(N,N‐dimethylamino‐2‐ethylmethacrylate) (PDMAEMA‐b‐PEG‐b‐PDMAEMA) with well‐defined structure and narrow molecular weight distribution (Mw/Mn = 1.21) was synthesized in aqueous medium via atom transfer radical polymerization (ATRP) of N,N‐dimethylamino‐2‐ethylmethacrylate (DMAEMA) initiated by the PEG macroinitiator. The macroinitiator and triblock copolymer were characterized with 1H NMR and gel permeation chromatography (GPC). Fluorescence spectroscopy, dynamic light scattering (DSL), transmittance measurement, and rheological characterization were applied to investigate pH‐ and temperature‐induced micellization in the dilute solution of 1 mg/mL when pH > 13 and gelation in the concentrated solution of 25 wt % at pH = 14 and temperatures beyond 80 °C. The unimer of Rh = 3.7 ± 0.8 nm coexisted with micelle of Rh = 45.6 ± 6.5 nm at pH 14. Phase separation occurred in dilute aqueous solution of the triblock copolymer of 1 mg/mL at about 50 °C. Large aggregates with Rh = 300–450 nm were formed after phase separation, which became even larger as Rh = 750–1000 nm with increasing temperature. The gelation temperature determined by rheology measurement was about 80 °C at pH 14 for the 25 wt % aqueous solution of the triblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5869–5878, 2008  相似文献   

17.
A new bipyridine‐functionalized dithioester was synthesized and further used as a RAFT agent in RAFT polymerization of styrene and N‐isopropylacrylamide. Kinetics analysis indicates that it is an efficient chain transfer agent for RAFT polymerization of the two monomers which produce polystyrene and poly(N‐isopropylacrylamide) polymers with predetermined molecular weights and low polydispersities in addition to the end functionality of bipyridine. The bipyridine end‐functionalized polymers were further used as macroligands for the preparation of star‐shaped metallopolymers. Hydrophobic polystyrene macroligand combined with hydrophiphilic poly(N‐isopropylacrylamide) was complexed with ruthenium ions to produce amphiphilic ruthenium‐cored star‐shaped metallopolymers. The structures of these synthesized metallopolymers were further elucidated by UV–vis, fluorescence, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) as well as NMR techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4225–4239, 2007  相似文献   

18.
Two D‐π‐A‐type 2,2,2‐trifluoroacetophenone derivatives, namely, 4′‐(4‐( N,N‐diphenyl)amino‐phenyl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Ben) and 4′‐(4‐(7‐(N,N‐diphenylamino)‐9,9‐dimethyl‐9H‐fluoren‐2‐yl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Flu), are developed as high‐performance photoinitiators combined with an amine or an iodonium salt for both the free‐radical polymerization of acrylates and the cationic polymerization of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 450 nm). The photochemical mechanisms are investigated by UV‐Vis spectra, molecular‐orbital calculations, fluorescence, cyclic voltammetry, photolysis, and electron‐spin‐resonance spin‐trapping techniques. Compared with 2,2,2‐trifluoroacetophenone, both photoinitiators exhibit larger redshift of the absorption spectra and higher molar‐extinction coefficients. PI‐Ben and PI‐Flu themselves can produce free radicals to initiate the polymerization of acrylate without any added hydrogen donor. These novel D‐π‐A type trifluoroacetophenone‐based photoinitiating systems exhibit good efficiencies (acrylate conversion = 48%–66%; epoxide conversion = 85%–95%; LEDs at 365–450 nm exposure) even in low‐concentration initiators (0.5%, w/w) and very low curing light intensities (1–2 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1945–1954  相似文献   

19.
Photoinduced free radical polymerization of vinyl monomers by using semiconductor inorganic nanoparticles (NPs) is investigated. Zinc oxide and iron‐doped zinc oxide were used as photosensitive compounds to initiate the polymerization of acrylamide as a water‐soluble monomer in aqueous environment and methyl methacrylate as an oil‐soluble monomer in organic media under UV‐light irradiation. The method uses photochemically generated electrons and holes from the NPs to form initiating hydroxyl radicals in aqueous media, while tertiary amines and iodonium salt served as coinitiator in organic media. The initiation mechanism in organic media involves hydrogen abstraction or reduction processes via charge carriers, respectively. The kinetic of the polymerization in both environments was studied by means of a photo‐differential scanning calorimetry. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1500–1507  相似文献   

20.
Two novel phenylacetylene derivatives bearing diethylaminomethyl groups at the meta position on phenyl groups [3‐(N,N‐diethylaminomethyl)phenyl]acetylene ( 1 ) and [3,5‐bis(N,N‐diethylaminomethyl)phenyl]acetylene ( 2 ) were synthesized and polymerized with [Rh(nbd)Cl]2 (nbd: norbornadiene). Both monomers gave highly cis–transoidal stereoregular polymers that exhibited an induced circular dichroism (ICD) in the UV–visible region, probably because of a prevailing one‐handed helical conformation upon complexation with optically active carboxylic acids such as mandelic acid and lactic acid. The sign of the Cotton effects reflected the absolute configuration of the chiral acids. Therefore, these polymers can be used as a novel probe for determining the configuration of chiral acids. The polymers were stable in the presence of chiral acids in solution. The poly‐ 1 complexed with chiral acids exhibited a split‐type ICD, whereas the poly‐ 2 complexed with chiral acids showed a different, non‐split‐type ICD. The ICD pattern of the poly‐ 1 /chiral acids complexes dramatically changed with an increase in the concentration of the chiral acids, thus showing a non‐split‐type ICD similar to those of the poly‐ 2 /chiral acid complexes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3180–3189, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号