首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiconducting thin films consisting of regioregular poly(3-hexylthiophene) (RR-PHT) and poly(N-dodecylacrylamide) (pDDA) were constructed by the Langmuir-Blodgett (LB) technique. A mixture of RR-PHT and pDDA spread from a chloroform solution on a water surface forms a stable monolayer, which can be transferred onto solid substrates by the LB method, yielding a well-defined polymer LB film. Surface morphology studies of the LB film indicate that the RR-PHT is dispersed uniformly throughout the surface. The polymer thin film was chemically doped by contacting with FeCl3 acetonitrile solution, and a conductivity of 5.6 S/cm was achieved. Further, the LB film was utilized as the semiconducting film in the field-effect transistor (FET), and mobilities of 2.2 x 10(-4) and 4.4 x 10(-4) cm2 V(-1) s(-1) were obtained by analyzing the saturated and linear regions of the current-voltage characteristic, respectively.  相似文献   

2.
合成了一种新的配位化合物(苄基三乙基铵)双(1,3-二硫杂环戊烯-2-硫酮-4,5-二硫基)-金(BTEAADT). 利用旋涂技术制备了该材料与聚甲基丙烯酸甲酯(PMMA)掺杂的复合薄膜, 该材料在复合薄膜中的质量分数为1%. 采用Z扫描方法, 分别测试了该材料的乙腈溶液和该材料与PMMA复合薄膜在波长为1064 nm, 脉宽为20 ps条件下的三阶非线性光学特性. 同时还研究了复合薄膜的线性光学性质. Z扫描的结果表明, 复合薄膜和该材料的乙腈溶液都具有自散焦效应, 非线性折射率都是负值. 在实验条件下, 两者的非线性吸收效应都是可以忽略的. 经过计算得出溶液样品的非线性折射率为-1.459×10-18 m2·W-1, 复合薄膜样品的非线性折射率为-3.978×10-15 m2·W-1. 该材料在1064 nm处的非线性光学器件方面有潜在应用价值.  相似文献   

3.
Phthalocyanines 1-3 were used in combinations with polymers in order to investigate reduction/reoxidation of thin film electrodes, photoinduced reduction of dioxygen at the junction of thin film electrodes to an electrolyte, and dioxygen reduction in the dark (fuel cell reaction) at dispersions of phthalocyanines on carbon supports. Electrochromic reduction/reoxidation of phthalocyanines also occurs readily inside a polymer matrix if intermolecular particle contact exists. A significant photoreduction of dioxygen is observed if O2 can form trapped states inside of the bulk of the film, with the result of enhanced photoconductivity. The kind of polymer is of striking influence. Phthalocyanines with central metals forming localized ionized states with dioxygen are active electrocatalysts for dioxygen reduction in the dark if they are finely dispersed on a carrier. The influence of both phthalocyanine and polymer component in each of the three-mentioned processes is discussed.  相似文献   

4.
The stability of ultrathin polymer films plays a crucial role in their technological applications. Here, we systematically investigated the influence of interfacial adsorption in physical aging and the stability of thin polymer films in the solvent-induced process. We further identify the stability mechanism from the theory of thin film stability. Our results show that the aging temperature and film thickness can strongly influence the stability of thin PS films in acetone vapor. Physical aging can greatly improve the stability of thin polymer films when the aging temperature T_(aging1)T_g. A thinner PS film more quickly reaches a stable state via physical aging. At short aging time, the formation of the adsorbed layer can reduce the polar interaction; however, it slightly influences the stability of thin polymer films in the solvent-induced process. At later aging stage,the conformational rearrangement of the polymer chains induced by the interfacial effect at the aging temperature T_(aging1) plays an important role in stabilizing the thin polymer films. However, at T_(aging2)T_g, the process of physical aging slightly influences the stability of the thin polymer films.The formation of the adsorbed layer at T_(aging2) can reduce the short-range polar interaction of the thin film system and cannot suppress the instability of thin polymer films in the solvent-induced process. These results provide further insight into the stable mechanism of thin polymer films in the solvent-induced process.  相似文献   

5.
A new technique has been established to fabricate thin film composite membranes, by which a hydrophilic polymer could be coated in thin film on a hydrophobic support membrane. The new technique was composed of two steps: dispersion of a reactant to the hydrophilic polymer in the hydrophobic support membrane and interfacial reaction between the reactant and the hydrophilic polymer to produce thin film of the hydrophilic polymer on the support membrane. Composite membranes in which a thin film of sodium alginate is coated on a polysulfone support membrane were prepared by the new technique for the reverse osmosis separation of anionic surfactant–water mixture. Two methods were employed to fabricate a thin film of sodium alginate on the support membrane: (1) dispersion of the crosslinking agent, CaCl2 alone in the support membrane and (2) dispersion of CaCl2 in the support membrane with help of PVA which adheres fast to the support membrane. The formation mechanism of the thin layer was suggested schematically on each method. Both the methods could produce successively a thin layer of SA on the support membrane. Especially, method (2) gave a strong bonding of the thin layer on the support because of the large contact area with the support through the PVA layer which sticks fast to the SA layer. From the SEM pictures and permeation experiments, the method (2) was confirmed to be better to produce a defect-free thin film of SA on the support membrane.  相似文献   

6.
Field-effect mobility of electrons as high as 0.1 cm2/(V s) is observed in n-channel thin film transistors fabricated from a solution spin-coated conjugated ladder polymer, poly(benzobisimidazobenzophenanthroline) (BBL), under ambient air conditions. This is the highest electron mobility observed to date in a conjugated polymer semiconductor. Comparative studies of n-channel thin film transistors made from a structurally similar nonladder conjugated polymer BBB gave an electron mobility of 10-6 cm2/(V s). These results demonstrate that electron transport can be as facile as hole transport in conjugated polymer semiconductors and that ladder architecture of a conjugated polymer can substantially enhance charge carrier mobility.  相似文献   

7.
The self‐assembly of nanostructured globular protein arrays in thin films is demonstrated using protein–polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self‐assembled cylindrical nanostructures with POEGA domains selectively segregating to the air–film interface. Long‐range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long‐range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state.

  相似文献   


8.
The stereoregular synthetic polymer isotactic polystyrene bearing partially sulfonated groups (SiPS) was used as a layer-by-layer assembled thin film for the first time. When a low molecular weight compound was employed as the pair for the alternative layer-by-layer (LbL) assembly, the frequency shift was very small using quartz crystal microbalance (QCM) analysis, whereas poly(vinylamine) (PVAm) formed an effective pair for the construction of LbL films with SiPS. When it was neutralized, SiPS was not assembled, probably due to the loss of effective polymer-polymer interactions. The ionic strength conditions revealed a slight difference of the assembly behavior on the isotactic polymer as compared to the atactic one. The assembled LbL film showed the same peaks over the range from 1141 to 1227 cm(-1) and 700 cm(-1) in the FT-IR/ATR spectra as the bulk complex of SiPS/PVAm, and the thickness on one side was calculated at 76 nm by QCM analysis. The surface roughness of the film was also observed by AFM.  相似文献   

9.
Polymer-cushioned lipid bilayers are frequently used to mimic the native environment of cellular membranes in respect to the extracellular matrix and intracellular structures. With the aim to actively tune lipid membrane characteristics, we pursue the approach to use temperature and pH responsive polymer thin films of poly(N-isopropylacrylamide-co-carboxyacrylamide) (PNIPAAm-co-carboxyAAM) as cushions for supported lipid bilayers. A cationic lipid bilayer composed of dioleoylphosphatidylcholine (DOPC) and dioleoyltrimethylammoniumpropane (DOTAP) (9:1) was formed on top of the polymer thin film in a drying/rehydration process. Fluorescence recovery after photobleaching (FRAP) yielded higher lipid diffusion coefficients (6.3-9.6 μm(2) s(-1)) on polymer cushions in comparison to solid glass supports (3.0-5.9 μm(2) s(-1)). No correlation of the lipid mobility was found with the swelling state of (PNIPAAm-co-carboxyAAM), which is ascribed to restrained interfacial electrostatic interactions and dispersion forces. The results revealed a minimal coupling of the lipid bilayer with the polymer cushions, and thus, bilayers supported by (PNIPAAm-co-carboxyAAM) provide interesting opportunities for unperturbed lipid diffusion combined with control of transmembrane protein mobility due to the impact of a tunable frictional drag.  相似文献   

10.
We introduce a new and facile process, corona discharge coating (CDC), to fabricate thin polymer films of the immiscible poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) and poly(methyl methacrylate) (PMMA) blends. The method is based on utilizing directional electric flow, known as electric wind, of the charged unipolar particles generated by corona discharge between a metallic needle and a bottom plate under high electric field (5-10 kV/cm). The electric flow rapidly spreads out the polymer solution on the bottom plate and subsequently forms a smooth and flat thin film over a large area within a few seconds. The method is found to be effective for fabricating uniform thin polymer films with areas larger than approximately 30 mm2. The thin films obtained by CDC exhibit unique microstructures where well-defined spherical and cylindrical domains of approximately 50 nm in diameter coexist. These nanosized domains are found to be much smaller than those in films made by conventional spin coating, which suggests that CDC is beneficial for fabricating phase-separated thin film structures with significantly increased interfacial areas. The effects of the applied voltage, tip-to-plate distance, and substrates on the film formation as well as the resulting microstructure are investigated. Furthermore, the light emitting performance of a device prepared by CDC is compared with one made by spin coating.  相似文献   

11.
High-frequency sinusoidal oscillations of a coarse-grained polymer model are used to calculate the local dynamic mechanical properties (DMPs) of free-standing polymer thin films. The storage modulus G(') and loss modulus G(") are examined as a function of position normal to the free surfaces. It is found that mechanically soft layers arise near the free surfaces of glassy thin films, and that their thickness becomes comparable to the entire film thickness as the temperature approaches the glass transition T(g). As a result, the overall stiffness of glassy thin films decreases with film thickness. It is also shown that two regions coexist in thin films just at the bulk T(g); a melt-like region (G(')G(")) in the middle of the film. Our findings on the existence of a heterogeneous distribution of DMPs in free-standing polymer thin films provide insights into recent experimental measurements of the mechanical properties of glassy polymer thin films.  相似文献   

12.
Water ice is observed to order at the copolymer ferroelectric poly(vinylidene difluoride-trifluoroethylene) surface. The successful growth of crystalline thin films of water on these polymer surfaces implicates water to polymer dipole interactions. These ice thin films are sufficiently ordered for experimental identification of the wave vector dependence in the electronic band structure of hexagonal ice. The significant band dispersion, of about 1 eV, suggests strong overlap of molecular orbitals between adjacent water molecules in the ice film. The presence of dipole interactions with adsorbate water is consistent with the possibility of water acting as a spectator to surface ferroelectric transitions in this system.  相似文献   

13.
This research is conducted to make solid-state electrolyte based on natural polymers, as an alternative material for energy storage such as battery. Natural polymers as materials of solid state batteries have various benefits, such as unlimited abundance, biodegradable, unleakage, stable form, excellent process, and electrochemical stability, compare to the liquid ones. In this study, a solid state polymer electrolyte based on natural polymer such as chitosan was synthesized by incorporating various ion salts (Li, Cu, Ag) in the polymer matrix. The synthesis of solid-state electrolyte polymer was carried out by casting method to make a thin polymer film. Then the ionic (Li, Cu, Ag) doping with various implant dose will be applied to the thin polymer film matrix by ionic implantation technique. The implanted polymer electrolytes are then characterized their conductivities, micro structures, and crystal structures by high precision LCR, scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD), respectively. The measured of conductivities showed that thin film polymers after implanted with ionic Li, Cu or Ag were increased the conductivity, meanwhile elemental analisys by electron dispersive spectroscopy indicated that ionic implant to chitosan was success. The modification of chitosan polymer to become electrolyte polymer can be concluded.  相似文献   

14.
(1S)-(+)-10-Camphorsulfonic acid-doped polydithienylmethine was prepared through an acid-catalyzed condensation reaction of alpha,alpha'-di-2-thienyl-(2,2'-bithiophene)-5,5'-dimethanol and was characterized by 1H NMR spectroscopy and size exclusion chromatography (SEC). The electronic and vibrational properties of the resulting polymer thin films vary with the loadings of the (1S)-(+)-10-camphorsulfonic acid. The dark conductivity and drift mobility, which is significantly high, of the polymer thin films were enhanced with increasing doping levels and reached maximum values of 8.0x10(-5) S.cm-1 and 3.5x10(-2) cm2.V-1.s-1, respectively, at a 7 mol % dopant loading. Higher doping levels (>7 mol %) result in nonuniform polymer thin films with degraded optical quality due to the formation of nanocrystalite and thus a decrease in conductivity and drift mobility was observed. The doped polydithienylmethine thin film also exhibited a photoconductivity response with an excitation at 457 nm and the highest photoconductivity (2x10(-4) S.cm-1) was again observed at the 7 mol % doping level. Spectroscopic investigation suggests that the enhanced transport properties can be attributed to polaronic species present. The electronic and vibrational changes which relate to such doping were characterized by electronic absorption spectroscopy, Raman spectroscopy, and FTIR spectroscopy. The changes in transport values can be directly related to the changes we see in our spectroscopic investigations.  相似文献   

15.
We investigate the effect of broken conjugation on the excited state dynamics of excimers in cyano-substituted phenylene-vinylene polymers. We compare previous studies on the well-characterized poly(2,5,2',5'-tetrahexyloxy-8,7'-dicyano-di-p-phenylene vinylene) (CN-PPV) with poly[oxa-1,4-phenylene-1,2-(1-cyano)-ethenylene-2,5-dioctyloxy-1,4-phenylene-1,2-(2-cyano)-ethenylene-1,4-phenylene] (CN-ether-PPV), in which the conjugation is disrupted by the insertion of an oxygen atom within the polymer backbone. Despite the broken conjugation, the spectroscopic behavior of the two materials is similar, indicating that the cyano group dominates the photophysics in these materials. The emission in CN-ether-PPV is due to a single-chain exciton in solution and due to an interchain excimer in thin film, as previously reported for CN-PPV; however, the excimer absorption and emission in thin film are blueshifted by approximately 0.2 eV relative to CN-PPV, implying that the excimer in CN-ether-PPV is less stable. Furthermore, substitution of an ether group along the chain results in decay times in both solution and film that are twice as long than in CN-PPV due to the broken conjugation which restricts the exciton within a conjugation segment and reduces its access to internal quenching sites. These properties result in a decay time of 14 ns for CN-ether-PPV film, one of the longest decay times observed in a conjugated polymer film. The long lifetime indicates a large exciton diffusion length, making these species particularly vulnerable to quenching by other materials. This work has implications for the design of conjugated polymers for efficient optoelectronic devices, such as photovoltaics.  相似文献   

16.
Sequential multilayer electropolymerization of Fe(vbpy)32+ (vbpy=4-vinyl-4′-methyl-2,2′-bipyridine) onto a thin gold electrode was followed in situ with surface plasmon spectroscopy (SPS) using a 1 mW HeNe laser at 6328 Å. The robustness of the gold film electrode necessary for electrochemical deposition in 0.10 M tetraethylammonium perchlorate+acetonitrile is imparted by use of a thin film of 3-mercaptopropyl-trimethoxysilane attached to a SF10 slide to which the metal is covalently bonded. As each polymer layer is deposited by cycling a potentiostat from 0.0 to −1.75 and back to 0.0 V, a plasmon spectrum (reflectivity versus prism angle) is obtained. SP analysis of the angular shift of the spectrum, which increases as the polymer layer thickens, yields an estimate of both the thickness and index of refraction of the polymer film. We found that the plasmon spectrum shifts to higher angles as the polymer layer thickens, along with a progressive decrease in the depth of the resonance minimum. Our modeling shows this unusual spectral behavior involving the resonance minimum is consistent with a Fe(vbpy)32+ chromophore absorption at 6328 Å, along with thickening of the polymer film. This work demonstrates that SPS is a viable in situ technique for obtaining thickness measurements of electrodeposited thin films.  相似文献   

17.
A thin film containing rhodamine B derivative with ethoxy silano group was formed on organic film substrate using the sol–gel method. Rhodamine B derivative with a triethoxysilano group, SiO2 sol and acrylic polymer having a triethoxy group were reacted in alcohol to give a coating solution for film formation, followed to be roll-coated on polyethylene terephthalate (PET) film and heat-treated at 130°C. This thin film consists of inorganic polymer (SiO2), organic polymer (acrylic resin) and organic dye. These component parts become interconnected through mutual chemical bonding. This thin film has an absorption peak at 578 nm and superb water resistant characteristics (almost no dye elution in 50°C water for 150 min) as a result of chemical bonding between the organic dye and the matrix skeleton. It also has good flexibility. The film can be used as a wavelength-selective absorption film for displays to improve contrast.  相似文献   

18.
We have investigated the influence of the adsorption process on the dewetting behavior of the linear polystyrene film(LPS),the 3-arm star polystyrene film(3 SPS) and the ring polystyrene film(RPS) on the silanized Si substrate.Results show that the adsorption process greatly influences the dewetting behavior of the thin polymer films.On the silanized Si substrate,the 3 SPS chains exhibit stronger adsorption compared with the LPS chains and RPS chains; as a result,the wetting layer forms more easily.For LPS films,with the decrease of annealing temperature,the kinetics of polymer film changes from exponential behavior to slip dewetting.As a comparison,the stability of 3 SPS and RPS films switches from slip dewetting to unusual dewetting kinetic behavior.The adsorbed nanodroplets on the solid substrate play an important role in the dewetting kinetics by reducing the driving force of dewetting and increase the resistant force of dewetting.Additionally,Brownian dynamics(BD) simulation shows that the absolute values of adsorption energy(ε) gradually increase from linear polymer(-0.3896) to ring polymer(-0.4033) and to star polymer(-0.4264),which is consistent with the results of our adsorption experiments.  相似文献   

19.
The dewetting behavior of thin polystyrene (PS) film has been investigated by placing an upper plate with a ca. 140 nm gap from the underlying substrate with the spin-coated thin polymer films. Three different kinds of dewetting behaviors of thin PS film have been observed after annealing according to the relative position of the PS film to the upper plate. Since the upper plate is smaller than the underlying substrate, a part of the polymer film is not covered by the plate. In this region (I), thin PS film dewetting occurs in a conventional manner, as previously reported. While in the region covered by the upper plate (III), the PS film exhibits unusual dewetted patterns. Meanwhile, in the area right under the edge of the plate (II) (i.e., the area between region I and region III), highly ordered arrays of PS droplets are formed. Formation mechanisms of different dewetted patterns are discussed in detail. This study may offer an effective way to improve the understanding of various dewetting behaviors and facilitate the ongoing exploration of utilizing dewetting as a patterning technique.  相似文献   

20.
This Communication describes the fabrication of planar structures comprising metallic features with nanometer-scale lateral dimensions in polymer prepared by sectioning a thin metallic film, embedded in a polymer matrix, in a plane perpendicular to the metallic film. This procedure converts a structure that is thin along the z-axis into a structure that is thin along the x-axis. The embedded thin metal film is still conductive and can be used as a nanoelectrode. The structure and composition of the exposed nanoedge can be easily tuned by changing the structure of the surface supporting the metal film, and the composition and the thickness of that film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号