首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single Pt nanoparticle (NP) collisions on an electrode surface were detected by using an electrocatalytic amplification method with a Pd ultramicroelectrode (UME). Pd is not a preferred material for UMEs for the detection of single Pt NP collisions, because Pd shows similar electrocatalytic activity compared with Pt for hydrazine oxidation, thus resulting in a high background current level. However, a Pt NP colliding on the Pd UME shows greatly enhanced activity compared with a Pt NP on an inert UME, such as a Au UME, which is usually used for the detection of single Pt NP collisions. The use of an electroactive UME material instead of an inert one facilitated the study of single‐NP activity on the various solid supports, which is important in many NP applications.  相似文献   

2.
《化学:亚洲杂志》2017,12(18):2434-2440
Collisions of silver nanoparticles (NPs) with a more electrocatalytic gold or platinum ultramicroelectrode (UME) surface have been observed by using an electrochemical method. Depending on the applied potential to the UME, the current response to the collision of Ag NPs on the UME resulted in various shape changes. A staircase decrease, a blip decrease, and a blip increase of the hydrazine oxidation current were obtained at an applied potential of 0.33, 0.80, and 1.3 V, respectively. Different collision behaviors of Ag NPs on the UME surface were suggested for each shape of current response. Ag NP attachment, which hindered the diffusion flux to the UME, caused a staircase decrease of the electrocatalytic current. Instantaneous blocking of the hydrazine oxidation by Ag NP collision and, following recovery of the current by means of oxidation of Ag NP, caused a blip decrease of the electrocatalytic current. The formation of a higher oxidation state of Ag on the Ag NP and its electrocatalytic hydrazine oxidation resulted in a blip increase of the electrocatalytic current. The analysis of the current response of a single NP collision experiment can be a useful tool to understand the various behaviors of NPs on the electrode surface.  相似文献   

3.
We investigated the electrochemical detection of single iridium oxide nanoparticle (IrO(x) NP) collisions at the NaBH(4)-treated Pt ultramicroelectrode (UME) in a scanning electrochemical microscope (SECM) over an insulating surface. The NP collision events were monitored by observing the electrocatalytic water oxidation reaction at potentials where it does not take place on the Pt UME. These collisions occurred stochastically, resulting in a transient response ("blip") for each collision. The frequency of the collisions is proportional to the flux of NPs to the UME tip, and thus equivalent to the SECM current. A plot of collision frequency versus distance followed the theoretical approach curve behavior for negative feedback for a high concentration of mediator, demonstrating that the collisions were diffusion-controlled and that single-particle measurements of mass transport are equivalent to ensemble ones. When the SECM was operated with a Pt substrate at the same potential as the tip, the behavior followed that expected of the shielding mode. These studies and additional ones result in a model where the IrO(x) NP collision on the Pt UME is adsorptive, with oxygen produced by the catalyzed water oxidation causing a current decay. This results in a blip current response, with the current decay diminished in the presence of the oxygen scavenger, sulfite ion. Random walk and theoretical bulk simulations agreed with the proposed mechanism of IrO(x) NP collision, adsorption, and subsequent deactivation.  相似文献   

4.
Single nanoparticle (NP) collisions were successfully observed by a potentiometric measurement. The open circuit potential (OCP) of a measuring Au ultramicroelectrode (UME) changes when Pt NPs collide with the UME in a hydrazine solution. The OCP change is related to the redox processes, the concentration of particles, particle size, and electrode size. Compared with the amperometric technique, this approach has several advantages: higher sensitivity, simpler apparatus, fewer problems with NP decomposition, and contamination.  相似文献   

5.
Direct electrochemical characterization of freely moving nanoparticles (NPs) at the individual particle level is challenging. A method is presented that can achieve this goal based on the collision between a NP and an ultramicroelectrode (UME). By applying a sinusoidal potential to the UME and monitoring the current response in the frequency domain, a sudden change in the phase angle indicates the arrival of a NP at the UME. The response induced by the collision can be isolated and used to explore the properties of the NP. This method, analogous to a high‐speed camera, can obtain a snapshot of the properties of the single NP at the moment of a collision. The proposed method was employed to investigate the properties of both the hard catalytic Pt NP and soft electroactive emulsion droplets, and many new insights were revealed thereafter. The method also has the potential to be applied in many other fields, where the interested signals appear as discrete events.  相似文献   

6.
In this paper, nano‐gold modified carbon paste electrode (NGMCPE) was employed to develop an electrochemical DNA hybridization biosensor. The proposed sensor was made up by immobilization of 15‐mer single stranded oligonucleotide probe for detection of target DNA. Hybridization detection relies on the alternation in guanine oxidation signal following hybridization of the probe with complementary genomic DNA. The guanine oxidation was monitored using differential pulse voltammetry (DPV). Different factors such as activation potential, activation time and probe immobilization conditions were optimized. The selectivity of the sensor was investigated by non‐complementary oligonucleotides. Diagnostic performance of the biosensor was described and the detection limit was found 1.9 × 10?13 M at the NGMCPE surface. All of the investigations were performed in both CPE and NGMCPE and finally their results were compared.  相似文献   

7.
A label-free electrochemical detection protocol for DNA hybridization is reported for the first time by using a gold electrode (AuE). The oxidation signal of guanine was monitored at +0.73 V by using square wave voltammetry (SWV) on self-assembled l-cysteine monolayer (SAM) modified AuE. The electrochemical determination of hybridization between an inosine substituted capture probe and native target DNA was also accomplished. 6-mer adenine probe was covalently attached to SAM via its amino link at 5 end. Then, 6-mer thymine-tag of the capture probe was hybridized with the adenine probe, thus left the rest of the oligonucleotide available for hybridization with the target. The dependence of the guanine signal upon the concentration of the target was observed. Probe modified AuE was also challenged with non-complementary and mismatch containing oligonucletides. Label-free detection of hybridization on AuE is greatly advantageous over the existing carbon and mercury electrode materials, because of its potential applicability to microfabrication techniques. Performance characteristics of the genosensor are described, along with future prospects.  相似文献   

8.
Networks of pristine single walled carbon nanotubes (SWNTs) grown by catalysed chemical vapour deposition (cCVD) on an insulating surface and arranged in an ultramicroelectrode (UME) format are insensitive to the electro-oxidation of hydrazine (HZ) in aqueous solution, indicating a negligible metallic nanoparticle content. Sensitisation of the network towards HZ oxidation is promoted by the deliberate and controlled electrodeposition of "naked" gold (Au) nanoparticles (NPs). By controlling the deposition conditions (potential, time) it is possible to control the size and spacing of the Au NPs on the underlying SWNT network. Two different cases are considered: Au NPs at a number density of 250 ± 13 NPs μm(-2) and height 24 nm ± 5 (effective surface coverage, θ = 92%) and (ii) Au NPs of number density ~ 22 ± 3 NPs μm(-2) and height 43 nm ± 8 nm (θ = 35%). For both morphologies the HZ oxidation half-wave potential (E(1/2)) is shifted significantly negative by ca. 200 mV, compared to a gold disc UME of the same geometric area, indicating significantly more facile electron transfer kinetics. E(1/2) for HZ oxidation for the higher density Au NP-SWNT structure is shifted slightly more negative (by ~25 mV) than E(1/2) for the lower density Au NP electrode. This is attributed to the lower flux of HZ at NPs in the higher number density arrangement (smaller kinetic demand). Importantly, using this approach, the calculated HZ oxidation current density sensitivities for the Au NP-SWNT electrodes reported here are higher than for many other metal NP functionalised carbon nanotube electrodes.  相似文献   

9.
We describe a supersandwich type of electrochemical DNA biosensor based on the use of a glassy carbon electrode (GCE) modified with reduced graphene oxide (rGO) sheets that are decorated with gold nanoparticles (Au NPs). Thiolated capture DNA (probe DNA) was covalently linked to the Au NPs on the surface of the modified GCE via formation of Au-S bonds. In presence of target DNA, its 3′ terminus hybridizes with capture probe and the 5′ terminus hybridizes with signal probe labeled with Methylene Blue (MB). On increasing the concentration of target DNA, hybridization between signal probe and target DNA results in the formation of three different DNA sequences that form a supersandwich structure. The signal intensity of MB improves distinctly with increasing concentrations of target DNA in the sample solution. The assembling process on the surface of the electrode was studied by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used to monitor the hybridization event by measuring the changes in the peak current for MB. Under optimal conditions, the peak currents in DPV for MB linearly increase with the logarithm of target DNA concentration in the range from 0.1 μM to1.0 fM, with a detection limit of 0.35 fM (at an signal/noise ratio of 3). This biosensor exhibits good selectivity, even over single-base mismatched target DNA.
Figure
We designed a sensitive supersandwich electrochemical DNA biosensor based on rGO sheets decorated with Au NPs. SEM and electrochemical methods were employed to investigate the assembly process of the biosensor. The biosensor exhibits high sensitivity and good specificity.  相似文献   

10.
The current response of the collision of ascorbic acid‐stabilized copper (Cu) single nanoparticles (NPs) on a gold (Au) ultramicroelectrode (UME) surface was observed by using an electrocatalytic amplification method. Here, the glucose oxidation electrocatalyzed by oxidized Cu NPs was used as the indicating reaction. In this system, the NP collision signals were obtained simultaneously by both direct particle electrolysis and electrocatalytic amplification. For example, when the applied potential was high enough for Cu NP oxidation, a blip response combined with a staircase response was observed as a current signal. The blip part in the single Cu NP collision signal indicates the self‐oxidation of a Cu NP, and the staircase part indicates the steady‐state electrocatalytic reaction by oxidized Cu NP.  相似文献   

11.
Detection of the genotoxic impurity hydrazine (HZ) in the presence of active pharmaceutical ingredients (APIs) represents a significant challenge to the pharmaceutical industry. Here we show how the use of electrochemical strategies in conjunction with metal nanoparticle (NP) functionalised polycrystalline boron‐doped diamond (BDD) electrodes enables detection of HZ in the presence of two different electrochemically active APIs. By simply changing the chemical identity of the metal NP, which shifts the detection potential for HZ, it is possible to selectively screen out the API signature from the HZ current – voltage response. HZ detection limits of 11.1 µM (Au NP BDD) and 3.3 µM (Pt NP BDD) in the presence of excess acetaminophen and promazine respectively, were determined using differential pulse voltammetry in quiescent solution.  相似文献   

12.
The unique binding event between Escherichia coli single-stranded DNA binding protein (SSB) and single-stranded oligonucleotides conjugated to gold (Au) nanoparticles is utilized for the electrochemical detection of DNA hybridization. SSB was attached onto a self-assembled monolayer (SAM) of single-stranded oligonucleotide modified Au nanoparticle, and the resulting Au-tagged SSB was used as the hybridization label. Changes in the Au oxidation signal was monitored upon binding of Au tagged SSB to probe and hybrid on the electrode surface. The amplified oxidation signal of Au nanoparticles provided a detection limit of 2.17 pM target DNA, which can be applied to genetic diagnosis applications. This work presented here has important implications with regard to combining a biological binding event between a protein and DNA with a solid transducer and metal nanoparticles.  相似文献   

13.
Kwon SJ  Yang H  Jo K  Kwak J 《The Analyst》2008,133(11):1599-1604
Redox cycling of enzymatically amplified electroactive species has been widely employed for high signal amplification in electrochemical biosensors. However, gold (Au) electrodes are not generally suitable for redox cycling using a reducing (or oxidizing) agent because of the high background current caused by the redox reaction of the agent at highly electrocatalytic Au electrodes. Here we report a new redox cycling scheme, using nicotinamide adenine dinucleotide (NADH), which can be applied to Au electrodes. Importantly, p-aminophenol (AP) redox cycling by NADH is achieved in the absence of diaphorase enzyme. The Au electrodes are modified with a mixed self-assembled monolayer of mercaptododecanoic acid and mercaptoundecanol, and a partially ferrocenyl-tethered dendrimer layer. The self-assembled monolayer of long thiol molecules significantly decreases the background current of the modified Au electrodes, and the ferrocene modification facilitates easy oxidation of AP. The low amount of ferrocene on the Au electrodes minimizes ferrocene-mediated oxidation of NADH. In sandwich-type electrochemical immunosensors for mouse immunoglobulin G (IgG), an alkaline phosphatase label converts p-aminophenylphosphate (APP) into electroactive AP. The amplified AP is oxidized to p-quinoneimine (QI) by electrochemically generated ferrocenium ion. NADH reduces QI back to AP, which can be re-oxidized. This redox cycling enables a low detection limit for mouse IgG (1 pg mL(-1)) to be obtained.  相似文献   

14.
孙琳琳  王伟  陈洪渊 《电化学》2019,25(3):386-399
近年来,单颗粒碰撞技术在纳米电化学领域受到广泛关注. 该技术通常控制超微电极处于某一电位,检测单个纳米颗粒随机碰撞到电极表面后产生的瞬时电流. 通过分析电流信号,可以研究单个纳米颗粒的性质. 尽管该技术可以检测单个纳米颗粒的电化学或电催化电流,但是传统的单颗粒碰撞技术缺乏空间分辨率,难以识别和表征特定的纳米颗粒. 因此,结合光学成像技术研究单颗粒碰撞电化学来补充电化学技术缺失的空间信息已成为一种趋势. 本文首先简要综述了单颗粒碰撞技术的三种检测原理,主要介绍了近年来单颗粒碰撞技术与荧光显微镜、表面等离激元共振显微镜、全息显微镜和电致化学发光相结合的研究进展,最后展望了单颗粒碰撞技术未来的发展趋势.  相似文献   

15.
We herein constructed a sensor that converts target DNA hybridization‐induced conformational transformation of the probe DNA to electrochemical response based on host‐guest recognition and nanoparticle label. In the sensor, the hairpin DNA terminal‐labeled with 4‐((4‐(dimethylamino)phenyl)azo)benzoic acid (dabcyl) and thiol group was immobilized on Au electrode surface as the probe DNA by Au‐S bond, and the CdS nanoparticles surface‐modified with β‐cyclodextrins (CdS‐CDs) were employed as electrochemical signal provider and host‐guest recognition element. Initially, the probe DNA immobilized on electrode kept the stem‐loop configuration, which shielded dabcyl from docking with the CdS‐CDs in solution due to the steric effect. After target hybridization, the probe DNA underwent a significant conformational change, which forced dabcyl away from the electrode. As a result, formerly‐shielded dabcyl became accessible to host‐guest recognition between β‐cyclodextrin (β‐CD) and dabcyl, thus the target hybridization event could be sensitively transduced to electrochemical signal provided by CdS‐CDs. This host‐guest recognition‐based electrochemical sensor has been able to detect as low as picomolar DNA target with excellent differentiation ability for even single mismatch.  相似文献   

16.
This work is devoted to the study of the electrochemical grafting of nitrophenyl groups onto platinum ultramicroelectrode (UME). The grafting was made using the electrochemical reduction of nitrophenyldiazonium. Our results demonstrate the possibility to reduce the diazonium onto Pt UME. As consequence the electrochemical reduction leads to the attachment of nitrophenyl groups onto the UME surface. Following that, the modified UME was characterized using electrochemical techniques. In addition, the electrochemical response of the modified UME in the presence of reversible redox couple, ferrocene, has been studied. The main remark is that the steady state current observed at the UME is not affected by the presence of the nitrophenyl layers. Finally, from this last point we demonstrate the possibility to achieve scanning electrochemical microscopy (SECM) using modified platinum UME.  相似文献   

17.
A reduced graphene oxide/platinum(II) tetraphenylporphyrin nanocomposite (RGO/Pt‐TPP)‐modified glassy carbon electrode was developed for the selective detection of hydrazine. The RGO/Pt‐TPP nanocomposite was successfully prepared via noncovalent π–π stacking interaction. The prepared nanocomposite was characterized using nuclear magnetic resonance, electrochemical impedance, ultraviolet–visible and Raman spectroscopies, scanning electron microscopy and X‐ray diffraction. The electrochemical detection of hydrazine was performed via cyclic voltammetry and amperometry. The RGO/Pt‐TPP nanocomposite exhibited good electrocatalytic activity towards detection of hydrazine with low overpotential and high oxidation peak current. The fabricated sensor exhibited a wide linear range from 13 nM to 232 μM and a detection limit of 5 nM. In addition, the fabricated sensor selectively detected hydrazine even in the presence of 500‐fold excess of common interfering ions. The fabricated electrode exhibited good sensitivity, stability, repeatability and reproducibility. In addition, the practical applicability of the sensor was evaluated in various water samples with acceptable recoveries.  相似文献   

18.
《Electroanalysis》2004,16(22):1912-1918
In this study, a field effect transistor (FET)‐type biosensor based on 0.5 μm standard complementary metal oxide semiconductor (CMOS) technology is proposed and its feasibility for detecting deoxyribonucleic acid (DNA) and protein molecules is investigated. Au, which has a chemical affinity with thiol by forming a self‐assembled monolayer (SAM), was used as the gate metal in order to immobilize DNA and protein molecules. A Pt pseudo‐reference electrode was employed for the detection of biomolecules. The sensor was fabricated as a p‐channel (P)MOSFET‐type because PMOSFET with positive surface potential is useful for detecting negatively charged biomolecules from the view point of its high sensitivity and fast response time. DNA and protein molecules were detected by measuring the variation of the drain current due to the variation of biomolecular charge and capacitance. DNA and protein molecules used in the experiment were 15mer–oligonucleotide probe and streptavidin‐biotin protein complexes, respectively. DNA was detected by both in situ and ex situ measurements. Additionally, to verify the interactions among SAM, streptavidin, and biotin, surface plasmon resonance (SPR) measurement was performed.  相似文献   

19.
A self-assembled monolayer (SAM) of thiol modified chitosan (SH-CHIT), with thioglycolic acid (TGA) as a modifier to bestow thiol groups, has been prepared onto gold (Au)-coated glass plates for fabrication of the nucleic acid biosensor. The chemical modification of CHIT via TGA has been evidenced by Fourier transform infrared spectroscopy (FT-IR) studies, and the biocompatibility studies reveal that CHIT retains its biocompatible nature after chemical modification. The electrochemical studies conducted onto SH-CHIT/Au electrode reveal that thiol modification in CHIT amino end enhances the electrochemical behavior indicating that it may be attributed to delocalization of electrons in CHIT skeleton that participates in the resonance process. The carboxyl group modified end of DNA probe has been immobilized onto SH-CHIT/Au electrode using N-ethyl-N′-(3-dimethylaminopropyl)carbodimide (EDC) and N-hydroxysuccinimide (NHS) chemistry for detection of complementary, one-base mismatch and non-complementary sequence using electrochemical and optical studies for Mycobacterium tuberculosis detection. It has been found that DNA-SH-CHIT/Au bioelectrode can specifically detect 0.01 μM of target DNA concentration with sensitivity of 1.69?×?10?6 A μM?1.  相似文献   

20.
We present a new strategy for the label‐free electrochemical detection of DNA hybridization based on gold nanoparticles (AuNPs)/poly(neutral red) (PNR) modified electrode. Probe oligonucledotides with thiol groups at the 5‐end were covalently linked onto the surface of AuNPs/PNR modified electrode via S‐Au binding. The hybridization event was monitored by using differential pulse voltammetry (DPV) upon hybridization generates electrochemical changes at the PNR‐solution interface. A significant decrease in the peak current was observed upon hybridization of probe with complementary target ssDNA, whereas no obvious change was observed with noncomplementary target ssDNA. And the DNA sensor also showed a high selectivity for detecting one‐mismatched and three‐mismatched target ssDNA and a high sensitivity for detecting complementary target ssDNA, the detection limit is 4.2×10?12 M for complementary target ssDNA. In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号