首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The shape memory effect and superelasticity are usually found in alloys exhibiting spontaneous martensitic transformation. Thus it is hard to imagine that such interesting effects can appear in a system without a martensitic transformation. In this Letter we show shape memory and the superelasticity effect in a nonmartensitic Ti48.5Ni51.5 alloy, which has no martensitic transformation but undergoes a "strain glass" transition. In situ x-ray diffraction experiment showed that the shape memory and superelasticity in strain glass stem from a stress-induced strain glass to martensite transformation and its reverse transformation. The new shape memory and superelasticity in strain glass extends the regime of the shape memory effect and superelasticity and may lead to novel applications.  相似文献   

2.
武祥  蔡伟  曲凤玉 《中国物理 B》2009,18(4):1669-1673
This paper reports a novel helix-like ZnO nanostructure with several tens of nanometres in thickness synthesized on a gold-coated Si substrate by thermal evaporation of zinc sulfide powder at 1020°C. Transmission electron microscope characterization shows that as-synthesized ZnO nanohelices extend along [01\bar 11] direction and the axial direction of the helix is along [0001] direction. A catalyst-intervened dislocation-induced growth mechanism has been suggested to explain the formation of the helix-like ZnO nanostructures. This study opens a new route to construct helix-like ZnO nanostructures by different evaporation sources.  相似文献   

3.
The dependence of shape memory effect and superelasticity on the crystal orientation, size, and particle volume fraction is studied for Ti–Ni and Fe–Ni–Co–Ti single crystals. The shape memory effect and superelasticity are shown to decrease with increase in the particle volume fraction and depend on the number of crystallographic variants of particles that can vary due to aging under loading. The influence of disperse particles undergoing no martensite transformations on the martensitic crystal growth and their fine structure is examined.  相似文献   

4.
Russian Physics Journal - High-strength materials containing dispersed Ti3Ni4 particles (d ~ 800 nm) and exhibiting superelasticity (SE) in a wide temperature range from 200 to 450 K were designed...  相似文献   

5.
Russian Physics Journal - The paper studies superelasticity in a 203–523 K temperature range of the 42.5Fe-34Mn-15Al-7.5Ni-1Ti at.% oligocrystals quenched and aged at 473 K for 3 hours. It is...  相似文献   

6.
Russian Physics Journal - Using Ti49.3Ni50.7 (at.%) alloy specimens, the influence of mechanical cycling by the bend method on the values of shape memory and superelasticity effects is investigated...  相似文献   

7.
Cold-rolled TiNi alloy was treated by electropulsing with different process parameters. The superelasticity, electrical resistivity and microstructure evolution of the TiNi alloy were investigated. The recrystallization is found to happen in the cold-rolled TiNi alloys during electropulsing treatment (EPT) processing and it took 9 s to complete the crystallization in the EPT process. In addition, the grain size increases with the charge voltage and the discharge frequency of the electropulse. The maximum superelasticity of 6.94 % is gained when the TiNi alloy is treated by the electropulsing with the frequency of 300 Hz. The short recrystallization time of the alloy is attributed to the acceleration of atomic diffusion and the movement velocity of the grain boundary by electropulsing. This research provides an in-depth understanding of how the electropulsing affects the microstructure and superelasticity of TiNi alloy.  相似文献   

8.
Because of its biocompatibility, superelasticity and shape memory characteristics, NiTi alloys have been gaining immense interest in the medical field. However, there is still concern on the corrosion resistance of this alloy if it is going to be implanted in the human body for a long time. Titanium is not toxic but nickel is carcinogenic and is implicated in various reactions including allergic response and degeneration of muscle tissue. Debris from wear and the subsequent release of Ni+ ions due to corrosion in the body system are fatal issues for long-term application of this alloy in the human body.This paper reports the corrosion and wear properties of laser surface modified NiTi using Mo and ZrO2 as surface alloying elements, respectively. The modified layers which are free from microcracks and porosity, act as both physical barrier to nickel release and enhance the bulk properties, such as hardness, wear resistance, and corrosion resistance. The electrochemical performance of the surface modified alloy was studied in Hanks’ solution. Electrochemical impedance spectroscopy was measured.  相似文献   

9.
NiTi alloys are potentially useful in biomedical application due to their unique superelasticity and shape memory effect. However, the materials are vulnerable to surface corrosion and the most serious issue is out-diffusion of toxic Ni ions from the substrate into body tissues and fluids. In this paper, Diamond-like carbon (DLC) film is fabricated on the NiTi alloys using plasma immersion ion implantation and deposition (PIIID) at room temperature to improve their corrosion resistance and block the out-diffusion of the Ni ions. The results show that the DLC films cannot only improve the corrosion resistance of the NiTi substrate, but also effectively suppress the Ni ions release from the substrate. The reason that the corrosion resistance of the coated samples is markedly improved due to the DLC films formation is systematically investigated.  相似文献   

10.
The interest in NiTi alloys for medical applications has been steadily growing in recent years because of its biocompatibility, superelasticity and shape memory characteristics. However, the high Ni content in NiTi alloys is still a concern for its long-term applications in the human body. The release of Ni ion into the human body might cause serious problems, as Ni is capable of eliciting toxic and allergic responses. In view of this, surface modification to reduce the surface content of Ni and to improve the corrosion resistance, both of which would reduce Ni release, is an important step in the development of NiTi implants. In the present study, NiTi was surface alloyed with Nb or Co by laser processing. The fine dendritic structure characteristic of laser processing has been described in terms of rapid solidification. The amount of surface elemental Ni was reduced to 10% and 35% for the Nb-alloyed and Co-alloyed layer, respectively. The corrosion resistance in Hanks’ solution (a simulated body fluid) was increased as evidenced by a reduced passive current density and a higher pitting potential for both the Nb- and Co-alloyed specimens. The composition and hardness profiles along the depth of the modified layer were correlated with the distribution of the dendrites. The microhardness of the alloyed layers was around 700-800 Hv, which was about four times that of the untreated NiTi specimens.  相似文献   

11.
Special metals showing shape memory are considered for use in contact with tissue. Basic criteria for them are devised. When a shape-memory material is used over long periods, one needs to combine porosity with good permeability and superelasticity. Only alloys based on TiNi are at present really promising for such porous elastic implanted structures.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 97–100, March, 1989.  相似文献   

12.
陈璐  李烨飞  郑巧玲  刘庆坤  高义民  李博  周长猛 《物理学报》2019,68(5):53101-053101
采用基于密度泛函理论的第一性原理系统研究了B2-和B19'-NiTi合金所有低指数表面的表面能、表面结构稳定性、表面电子结构等性质.计算结果表明两种NiTi合金所有低指数表面的原子弛豫主要集中在表面2-3个原子层,且以Ti原子为终止原子表面构型的原子振荡最为剧烈,Ni和Ti原子共同终止表面构型的原子振荡最小;价电荷密度沿着表面构型向真空层方向快速衰减;表面能计算结果显示其与配位数成反相关.B2-和B19'-NiTi合金的非密排且非化学计量比表面的表面能取决于Ti的化学势,表面能数值较高;而密排面的表面构型符合化学计量比,其表面能较低,表现出卓越的化学稳定性;其中以B2-NiTi(101)密排面的表面稳定性最优.  相似文献   

13.
The results of investigations into the influence of disperse particles on the temperatures of martensitic transformations as well as values of thermal and mechanical hysteresis in the FeNiCoAlTa, CoNiGa, NiFeGa, TiNi single crystals are reported. It is shown that the disperse particles are responsible for refining martensitic crystals and changing their fine twin structure as compared with the monophase state. This, in turn, affects the values of thermal and mechanical hysteresis and the temperature range of superelasticity.  相似文献   

14.
Effect of oxidation on transformation and deformation behavior was investigated in Ni-Ti alloy by comparing the as-oxidized specimen and the polished one. Ti's preferable reaction with oxygen results in the compounds such as Ni3Ti and Ni4Ti3, and the Ni-rich region between matrix and oxide. Martensitic transformation did not take place in the Ni-rich region due to the high Ni content while R phase transformation temperature decreased significantly. Oxidation deteriorated the superelasticity due to the formation of the compound as well as the Ni-rich region in which slip deformation occurs instead of induction of martensite.  相似文献   

15.
Ni_(50)Mn_(25)Ga_(20)Fe_5 ferromagnetic shape memory alloy microwires with diameters of ~ 30–50 μm and grain sizes of ~ 2–5 μm were prepared by melt-extraction technique. A step-wise chemical ordering annealing was carried out to improve the superelasticity strain and recovery ratio which were hampered by the internal stress, compositional inhomogeneity,and high-density defects in the as-extracted Ni_(50)Mn_(25)Ga_(20)Fe_5 microwires. The annealed microwires exhibited enhanced atomic ordering degree, narrow thermal hysteresis, and high saturation magnetization under a low magnetic field. As a result, the annealed microwire showed decreased superelastic critical stress, improved reversibility, and a high superelastic strain(1.9%) with a large recovery ratio(96%). This kind of filamentous material with superior superelastic effects may be promising materials for minor-devices.  相似文献   

16.
The dependence of deforming stresses, shape memory effect (SME), and superelasticity (SE) on the orientation of the single crystal axis, test temperature, and disperse particle size is examined for CoNiGa, NiMnGa, CoNiAl, FeNiCoTi, and TiNi single crystals. The orientational dependence of SME, SE, and temperature interval of the development of martensitic transformations (MT) under loading and SE is established. The influence of disperse particles on magnitudes of SME, SE, and mechanical hysteresis is discussed.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 4–20, September, 2004.  相似文献   

17.
柳祝红  马星桥 《物理学报》2012,61(2):28103-028103
本文研究了单晶Ni54Fe19Ga27不同方向的形状记忆效应、超弹性和磁性. 研究发现,单晶样品具有良好的双向形状记忆效应.不同晶体学方向的相变应变随着热循环次数的变化而改变. 在外应力作用下,通过应力诱发马氏体相变,样品在[001],[110],[111]方向分别产生了3.3%, 2% 和3%的可回复应变平台.磁性测量结果表明马氏体的磁晶各向异性能约为4.8× 105 erg/cm3,远远小于变体孪生所需机械应力能,因此磁场的作用是使磁矩发生转动而不是使孪晶界移动, 成功揭示了不能在NiFeGa中获得大磁感生应变的物理根源.  相似文献   

18.
The separation of a shock wave into an elastic precursor and a plastic wave is a characteristic phenomenon occurring only in solid media. The existence of the elastic shock wave at pressures p ≈ 10 GPa, which is one or two orders of magnitude higher than the dynamic elastic limit, has been detected in recent numerical calculations and a femtosecond laser experiment. The plastic shock wave has no time to be formed in these ultrashort waves at p ≈ 10 GPa. The processes of the formation and propagation of the elastic and plastic waves in aluminum at higher pressures obtained by means of femtosecond lasers have been analyzed in this work. It has been found that the elastic precursor survives even under the conditions when the pressure behind the plastic front reaches a giant value p ∼ 1 Mbar at which the melting of the metal begins. It has been shown that superelasticity should be taken into account to correctly interpret the preceding laser experiments.  相似文献   

19.
In this paper, neutron techniques - in particular, small angle neutron scattering (SANS) and neutron diffraction (ND) - are considered for the non-destructive characterization of Nitinol artery stents. This roughly equiatomic (50Ni-50Ti at%) shape memory alloy (SMA) exhibits significant properties of superelasticity and biocompatibility that make it suitable to be typically used as smart material for medical implants and devices. Nitinol self-expanding artery stents, as permanent vascular support structures, supply an ideal option to bypass surgery, but they are submitted for the whole of patient's life to the dynamical stress of the artery pulsation and the aggression from the biological environment. These stents, consequently, can suffer from wear and fracture occurrence likely due to a variety of cyclic fatigue, overload conditions and residual stresses. Neutrons have recently become a progressively more important probe for various materials and components and they allow achieving information complementary to those obtained from the traditional microstructural analyses. The outputs from the preliminary works already carried out in this field consent to consider neutron techniques capable to contribute to the development of these crucial medical implants. The achievable results can yield trends adoptable in monitoring of the stent features.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号