首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using tapping mode atomic force microscopy (TMAFM), a polymer layer was found on the enamel surface after the exposure to xanthan gum solutions. The layer thickness is closely related to the exposure time and the concentration of xanthan gum solution. The thickness data were evaluated by a Kruskal-Wallis test and Box-Whisker Plot at a 95% confidence level (p<0. 05), and a statistically significant difference among the thickness data groups was demonstrated. After the exposure to 1000, 400, 100 mg/L xanthan gum solutions, the mean of layer thickness at the adsorption equilibrium is in the ranges of 103.5--122.06,82.4--88.94 and 45. 27--55.55 nm, respectively. This phenomenon suggests that the viscosity modifying a-gents in the beverage might be adsorbed on the enamel surface during consumption, which may form a barrier that can protect the enamel from being attacked by acid and therefore reduce dental erosion.  相似文献   

2.
Atomic force microscopy (AFM) is capable of solid surface characterization at the microscopic and submicroscopic scales. It can also be used for the determination of surface tension of solids (gamma) from pull-off force (F) measurements, followed by analysis of the measured F values using contact mechanics theoretical models. Although a majority of the literature gamma results was obtained using either Johnson-Kendall-Roberts (JKR) or Derjaguin-Muller-Toporov (DMT) models, re-analysis of the published experimental data presented in this paper indicates that these models are regularly misused. Additional complication in determination of gamma values using the AFM technique is that the measured pull-off forces have poor reproducibility. Reproducible and meaningful F values can be obtained with strict control over AFM experimental conditions during the pull-off force measurements (low humidity level, controlled and known loads) for high quality substrates and probes (surfaces should be free of heterogeneity, roughness, and contamination). Any probe or substrate imperfections complicate the interpretation of experimental results and often reduce the quality of the generated data. In this review, surface imperfection in terms of roughness and heterogeneity that influence the pull-off force are analyzed based upon the contact mechanics models. Simple correlations are proposed that could guide in selection and preparation of AFM probes and substrates for gamma determination and selection of loading conditions during the pull-off force measurements. Finally, the possibility of AFM measurements of solid surface tension using materials with rough surfaces is discussed.  相似文献   

3.
将半理想溶液理论和Butler方程相结合建立了预测多元电解质溶液表面张力的新型线性预测方程.新方程可由二元系数据预测多元系的表面张力数据,而不涉及任何多元交互作用参数.利用不同温度下24个混合电解质溶液的表面张力数据对新方程进行了系统检验.结果表明新方程可利用298.15K时二元系的渗透压系数和不同温度下二元系的表面张力数据预测不同温度下高浓度的多元系的表面张力数据,且预测结果与实验数据符合得很好,并且预测结果普遍优于基于Pitzer方程的表面张力模型.  相似文献   

4.
The interaction force between a very hydrophobic polymer surface and colloidal silica particles with a roughness of 10–15 nm has been measured in aqueous solutions of KOH and KCl using an atomic force microscope. The interaction can be described according to the DLVO theory by an electrical double-layer force that is repulsive at long distances and attractive at short distances and an attractive van der Waals force. The electrical double-layer potentials are compared to the zeta potentials of Teflon AF and the silica spheres. The roughness of the silica particles leads to an underestimation of the short-range attraction and the surface potential. Both KCl and KOH solutions affect the potential of the interacting surfaces. OH ions that adsorb preferentially to the Teflon AF surface create higher potentials than Cl ions. Range and strength of the attractive interaction are not affected by KCl solutions but reduced by addition of KOH. This can be explained by decreasing potential differences between the silica sphere and Teflon AF with increasing KOH concentration. In addition, the preferential adsorption of OH ions may lead to a reduction of the van der Waals interaction. The presence of nanobubbles, too, might play a role.  相似文献   

5.
Experimental values for surface tension of single and mixed electrolyte solutions were correlated using the models based on the perturbation theory. The Mean Spherical Approximation (MSA) model, coupled with the Ghotbi–Vera (GV) and the Mansoori et al. (BMCSL) equations of state, were used to correlate the experimental values of the surface tension. The results showed that the models can favourably correlate the experimental values for single electrolyte solutions. However, it was observed that the GV–MSA model can more accurately predict the surface tension for single electrolytes, especially at higher concentrations. Two different expressions for concentration dependency of cation hydrated diameters were used. Therefore, in terms of such dependency different forms of the models, i.e., GV–MSA1, GV–MSA2, BMCSL–MSA1 and BMCSL–MSA2 were introduced. It should be stated that the prediction of the surface tension for the mixed electrolyte solutions were made without introducing any new adjustable parameters. The results showed that GV–MSA2 model can predict more accurately the surface tension of electrolyte mixtures particularly at higher concentrations. Finally, the GV–MSA model was directly used to correlate the experimental results for the surface tension for both single and mixed electrolyte solutions with 2 and 4 adjustable parameters. The results showed that both of the models can accurately predict the experimental data of surface tension. These models can favourably fit and also, predict the surface tension of single electrolyte solutions with less than 1% average absolute relative deviation (AARD). The prediction capability of the proposed models is also acceptable for mixtures of electrolytes.  相似文献   

6.
Crystallization of high density polyethylene (PE) from the melt on model atomically flat solid surfaces decorated with micro- and nanoparticles of gold or NaCl of different size and densities is investigated. The morphology of the contact layer of PE after its detachment from the support is studied using atomic force microscopy (AFM). It is shown that the nucleating and ordering effect of the solid on PE crystallization depends to a large extend on the nanostructure of its surface, in particular on the size of the atomically flat domains and on the presence of nanoscopic obstacles. The minimum size of the flat domain which can significantly influence the PE crystallization is estimated to be of the order of 150 nm.  相似文献   

7.
The atomic force microscopy (AFM) possesses high spatial resolution and it is compatible with liquid environments. AFM can provide possibility to study a wide range of biological problems at the molecular level and acquire topological information at nanometre resolution under physiological conditions1,2. However, a major problem for image reconstruction of biological specimens is that structures of most biological molecules are very soft and delicate, which could be easily deformed and dama…  相似文献   

8.
原子力显微镜在多糖结构研究中的进展   总被引:10,自引:0,他引:10  
简述了原子力显微镜(AFM)的工作原理和特点,以及在多糖,特别是在淀粉结构研究中的进展。  相似文献   

9.
Nanoindentation using atomic force microscopy (AFM) was conducted to investigate the affect of accelerated ultraviolet (UV) and thermal degradation on the mechanical properties of polypropylene fibers. The affect of degradation on Young’s modulus across fiber cross-sections was investigated with progressive nanoindentation from the surface to the center of the fiber. UV degradation initially increases the Young’s modulus both at the center and the surface of the fibers until 120 h of exposure with the increase being more rapid at the surface. Moduli started to decrease beyond 120 h of exposure. Wide angle x-ray scattering shows an increase of crystallinity up to 120 h of exposure and total destruction of crystallinity at 144 h. Infrared spectra showed the formation of carbonyl bonds with UV exposure. To investigate thermal degradation, the fibers were exposed to 125 °C for four weeks. Young’s modulus increased near the surface after four weeks exposure. These results support the idea that surface degradation may lead to embrittlement of textile fibers.  相似文献   

10.
This study was performed to evaluate the use of atomic force microscopy (AFM) in examining the surface of the adsorbed layer of salivary proteins (salivary pellicle) formed in vivo on dental enamel and glass surfaces. Enamel and glass test pieces were attached to the buccal surfaces of the upper first molar teeth in two adults using removable intraoral splints. The splints were carried intraorally over periods ranging from 10 min to1 h. Using the contact mode of AFM, pellicle structures could be recognised on intraorally exposed specimens compared to nonexposed enamel and glass surfaces. The surface of the adsorbed salivary pellicle was characterised by a dense globular appearance. The diameter of the globulelike protein aggregates adsorbed onto enamel and glass varied between 80 and 200 nm and 80 and 150 nm, respectively. The structure of the adsorbed protein layer was clearly visible on glass surfaces, even though minor differences in the protein layer between glass and enamel specimens were observed. This study indicates that AFM is a powerful tool for high-resolution examination of the salivary pellicle surface structure in its native (hydrated) state. AFM avoids artefacts due to fixing, dehydration and sputter-coating which occur with scanning electron microscopic analyses. Received: 29 November 2000 Accepted: 14 December 2000  相似文献   

11.
用LB技术和原子力显微镜(AFM)研究了1,2-二油酸甘油-3-磷脂酰胆碱(DOPC)、1,2-二油酸甘油-3-磷脂酰乙醇胺(DOPE)和神经酰胺(Ceramide)对鞘磷脂(SM)/胆固醇(Chol)结构的影响. 实验结果表明, 在表面压力较低时, 每种混合脂双层膜都呈现均匀分布的脂双层结构. 随着表面压力的增加, 形态发生了明显的变化: (1) SM/Chol二元组分双层膜形成均一的液态有序相微区结构, 衬底覆盖率达到80%; (2) DOPC的加入促使SM/Chol双层膜出现相分离现象, SM/Chol形成的液态有序相 “岛状” 微区结构漂浮在液态无序相的DOPC上部, 约占总面积的30%; (3) DOPE与SM/Chol形成的双层膜明显不同于DOPC/SM/Chol, 呈现出液态无序相、液态有序相及凝胶相3相共存的结构; (4) Ceramide诱导了SM/Chol双层膜结构发生重排, 两层脂分子间发生翻转形成囊泡结构, 部分神经酰胺从液态有序相中分离形成小颗粒结构. 在较高膜压下, 各系统都呈现出具有特定形态的双层膜结构. 分子官能团的成键能力决定了双层膜形态结构.  相似文献   

12.
Biosurface fabrication using the Fab′ fragment of immunoglobulin (IgG) was carried out by self-assembly (SA) technique. The pepsin-digested monoclonal antibody (Mab) against bovine insulin containing the F(ab′)2 fragment and residual proteins was separated using affinity chromatography and dialysis. To prevent the nonspecific binding of F(ab′)2 onto gold (Au) substrate, the native disulfide bridge was reduced using dithiothreitol (DTT) to convert F(ab′)2 into Fab′, which made the immobilization to be carried out via the native thiol (–SH) group. The fabricated biosurface using SA technique showed the formation of stable thin film through AFM topography. Through the concentration change of DTT and Fab′, the absorption characteristics against the Au surface were investigated using surface plasmon resonance (SPR) with the flow cell. The amount of immobilized antibody fragment and the antigen binding capacity were regulated with respect to the reduction state and concentration of F(ab′)2. Based on the biosurface of the fabricated Fab′, the insulin-detection was carried out by the measurement of SPR. The proposed antibody surface could successfully detect the bovine insulin at the concentration from 100 ng/mL to 10 μg/mL.  相似文献   

13.
片式电容是由电介质陶瓷薄膜和内电极相互重叠而成的多层独石结构,又称多层陶瓷电容器(mul-tilayer ceram ic capacitors,简称MLCC)。具有体积小、内部电感低、绝缘电阻高及漏电流小、介质损耗低、价廉等优点,被广泛应用于各种电子整机中的振荡、耦合、滤波和旁路电路,尤其是高  相似文献   

14.
The scanning force microscope (SFM) was used to investigate the temperature dependent micro mechanical properties of polymethylmethacrylate (PMMA) films with a thickness of 35 nm in the range of the radius of gyration. Force-distance curves were performed in the glass transition range to create permanent nanometric indentations with maximal forces up to 4 μN. Quantitative measurements of the indentation depth during and after application of the force, hysteresis energy and slope of the loading part are carried out as function of sample temperature and applied force. The glass transition of the polymer film can be clearly identified by the change of the mechanical properties of the polymer. Surprisingly, only a small change of elasticity at the glass transition is observed.  相似文献   

15.
It is of great significance to study the effect of surfactants on the coal surface potential for effective dust suppression in mining faces. The effect of different concentrations of sodium dodecyl benzene sulfonate (SDBS) solution on the surface potential of the Zhaozhuang coal was measured by atomic force microscopy (AFM). The experimental results show that the SDBS solution has significant influence on the surface potential of the Zhaozhuang coal. The electrical characteristics of the coal surface at the nanometer scale are different from those of macroscopic or the mesoscopic level. The surface potential of coal is basically a normal distribution, showing certain electrical characteristics. The mean value of the surface potential of the Zhaozhuang coal is increased with the increase in concentration of the SDBS solution; when the concentration of the SDBS solution is 0.3%, the mean value of surface potential is 5.59 mv, which is about two times of the mean value of the surface potential without SDBS solution added. With the increase of the concentration of the SDBS solution, the maximum value of the surface potential of the Zhaozhuang coal increases, and the minimum value decreases. It shows that the SDBS solution has a significant effect on the potential distribution law and the magnitude of the coal surface. Subsequently, on the basis of the constructed Zhaozhuang coal macromolecule model, xtb and Multiwfn simulation software were used to calculate the molecular surface electrostatic potential value and electron density value of the Zhaozhuang coal molecules after adding water molecules. The variation law for the electrostatic potential surface of the molecule was obtained after adding numbers of water molecules to the surface of the coal molecule. The simulation results show that the area proportion of absolute molecular surface electrostatic potential greater than 10 kcal/mol is increased with the growth in the number of water molecules, while the area proportion of absolute molecular surface electrostatic potential less than 10 kcal/mol is decreased. Because of the free state O─H bond polarity of water molecules, the charges on the molecular surface are rearranged in order to change the electron density on the surface of coal molecules, which affects the overall electrostatic potential of the configuration.  相似文献   

16.
A novel push-pull oligomeric semiconductor, ENBT based on naphthodithiophene-benzothiodiazole was successfully designed and synthesized. ENBT was fully characterized by 1H NMR, MS, thermogravimetric analysis (TGA), UV–vis spectra, and cyclic voltammetry (CV). Furthermore, ENBT-based OFETs were fabricated by solution-processed dip-coating technique and its charge transporting property was investigated. The film of ENBT exhibited a hole mobility as high as 1.4?×?10?2?cm2/(Vs) with a current on/off ratio of 106–107 after annealed at 160?°C. In order to give an insight to the transporting property of ENBT films, thin film morphologies after annealing at different temperatures were also studied by atomic force microscopy (AFM).  相似文献   

17.
The surface structure and surface mechanical properties of low‐ and high‐density polyethylene were characterized by atomic force microscopy (AFM) as the polymers were stretched. The surfaces of both materials roughened as they were stretched. The roughening effect is attributed to deformation of nodular structures, related to bulk spherulites, at the surface. The surface‐roughening effect is completely reversible at tensile strains in the elastic regime and partially reversible at tensile strains in the plastic regime until the polymers are irreversibly drawn into fibers. AFM force versus distance interaction curves, used to measure changes in the stiffness of the surface and the surface elastic modulus as a function of elongation, show that the surfaces become softer as the polymers are drawn into fibers at high strains. At low elastic strains, however, the surface elastic modulus of HDPE increases—attributed to elastic energy stored by the amorphous regions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2263–2274, 2001  相似文献   

18.
In the present study a dynamic mode of atomic force microscopy for force measurements was employed to investigate the hydration repulsion force between charged surfaces in highly concentrated electrolyte solutions of NaCl, MgCl2 and LaCl3. A strong dependence of this repulsive force on the approaching rate of surfaces, the prehistory of their contact and the valency of cations was demonstrated. The phenomena were strongly pronounced in the cases of high scan rates, large surfaces and cations of high valency. The results obtained indicate that a fragile structure composed of water molecules, ions and hydrated ions exists outside of the primary layer of water molecules and ions adsorbed firmly on surfaces.  相似文献   

19.
The solvatochromic behaviour of different functional group-bearing and self-interacting polyalkylthiophenes with strong chromic responses in solution and self-assembling capacity in the solid state is investigated here. The menagerie of species deriving from the conformational freedom of the conjugated chains in solution has been examined in different solvent mixtures as their physico-chemical nature sensibly affects final material morphology in the solid (film) state. Memory of solution curling shape and of the degree of aggregation is in fact retained through casting or spin-coating procedures and permanently endures in the polymeric film. The efficiency of the final device based on the ICP (inherent conducting polymer) film may therefore be improved by simply acting on its morphology, which is directly determined by polymer dissolution conditions.  相似文献   

20.
With lower limits of detection and increased stability constantly being demanded of biosensor devices, characterisation of the constituent layers that make up the sensor has become unavoidable, since this is inextricably linked with its performance. This work describe the optimisation and characterisation of two aspects of sensor performance: a conductive polymer layer (polyaniline) and the immobilised protein layer. The influence of the thickness of polyaniline films deposited electrochemically onto screen-printed electrode surfaces is described in this work in terms of its influence on a variety of amperometric sensor performance characteristics: time to reach steady state, charging current, catalytic current, background current and signal/background ratios. The influence of polymer film thickness on the conductivity and morphology of finished films is also presented.

An electrostatic method of protein immobilisation is used in this work and scanning electron microscopy in conjunction with gold-labelled antibodies and back-scattered electron detection has enabled the direct visualisation of individual groups of proteins on the sensor surface. Such information can provide an insight into the performance of sensors under influence of increasing protein concentrations.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号