首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Raw oil shale, kerogen (demineralized shale) and carbonaceous residues from kerogen pyrolysis in the range 350–700°C (at 50°C intervals) were studied by laser ablation Fourier transform ion cyclotron resonance mass spectrometry using the fundamental frequency of Nd: YAG laser (1064 nm). Normally, pyrolysis of the raw materials produces oil and the resulting residues have decreased hydrogen to carbon ratios and exhibit relative increases in aromatic carbons. Raw shale and kerogen give positive-ion spectra with mainly protonated species of m/z 100–400. Laser ablation positive-ion mass spectra of the pyrolysis products of the kerogen show the presence of C60, C70 and other fullerene ions with a distribution of higher mass fullerene ions up to m/z 4000. Using high laser powers (100–3000 MW cm?2), the residue from pyrolysis at 350°C initially did not produce any fullerene ions (apart from traces of C60 and C70), but after continued ablation a cavity was formed in the target and a wide distribution of fullerene ions was obtained with subsequent laser pulses. Residues obtained from the pyrolysis of kerogen at 400–500°C produced fullerene ions at both low (4–200 kW cm?2) and high laser powers. The 550°C pyrolysis residue gave only small amounts of C60 and C70 positive ions at low laser power whereas residues from the pyrolysis of kerogen above 550°C did not give fullerene ions over a wide range of laser powers. It is proposed from the above results that the changes in the aromatic nature of the kerogen residues with increasing pyrolysis temperature are directly related to the ease of fullerene formation. This is possibly due to the formation of large polycyclic aromatic systems at pyrolysis temperatures above 400°C, formed in the residues. It should be noted that the shale samples (raw or pyrolysed) did not generate fullerene ions under any of the conditions employed in these experiments.  相似文献   

2.
The following nitrogen-containing supports with various nitrogen contents and structure and texture properties were synthesized: carbon nanofibers (N-CNFs) and amorphous microporous carbon materials (N-AMCMs). It was found that the above characteristics can be regulated by varying synthesis conditions: precursor compositions and reaction temperature and time. Mesoporous nitrogen-containing CNFs with a specific surface area of 30–350 m2/g and a pore volume of 0.10–0.83 cm3/g were formed by the catalytic decomposition of a mixture of ethylene with ammonia at 450–675°C. Microporous materials (N-AMCMs) with a specific surface area of 472–3436 m2/g and a micropore volume of 0.22–1.88 cm3/g were prepared by the carbonization of nitrogen-containing organic compounds at 700–900°C. An increase in the carbonization temperature and reaction time resulted in an increase in the specific surface area and microporosity of N-AMCMs, whereas lower temperatures of 450–550°C and reaction times of 1–3 h were optimal for the preparation of N-CNFs with a developed texture. It was found that milder synthesis conditions and higher nitrogen contents of precursors were required for obtaining high nitrogen concentrations in both N-CNFs and N-AMCMs. The synthetic method developed allowed us to prepare carbon supports with nitrogen contents to 8 wt %.  相似文献   

3.
The reaction of fullerene C60, single- and multi-walled carbon nanotubes (SWNTs and MWNTs, respectively), as well as a mixture of these carbon nanomaterials with 8–10 wt% of ammonium chloride (reaction promoter) with ammonia as a source of hydrogen and nitrogen, at an initial ammonium pressure of 0.6–0.8 MPa in the temperature range 20–550°C was studied. The reaction at 450°C is accompanied by hydrogenation and nitrogenation of the fullerite matrix, and at 500°C decomposition of the fullerene carcass occurs. Physicochemical properties of the hydride-nitride phases formed by the reaction were studied. Single- and multiwalled nanotubes were shown to be stable in an ammonium medium at 20–450°C, while at 500°C their ends are opened.  相似文献   

4.
Thermal behavior of green clay samples from Kunda and Arumetsa deposits (Estonia) as potential raw materials for production of ceramics and the influence of previously fired clay and hydrated oil shale ash additives on it were the objectives of this research. Two different ashes were used as additives: the electrostatic precipitator ash from the first field and the cyclone ash formed, respectively, at circulating fluidized bed combustion (temperatures 750–830 °C) and pulverized firing (temperatures 1,200–1,400 °C) of Estonian oil shale at Estonian Power Plant. The experiments on a Setaram Labsys Evo 1600 thermoanalyzer coupled with Pfeiffer OmniStar Mass Spectrometer by a heated transfer line were carried out under non-isothermal conditions up to 1,050 °C at the heating rate of 5 °C min?1 in an oxidizing atmosphere containing 79 % of Ar and 21 % of O2. Standard 100 µL Pt crucibles were used, the mass of samples was 50 ± 0.5 mg, and the gas flow 60 mL min?1. The results obtained indicate the complex character of transformations and show certain differences in the thermal behavior of Arumetsa and Kunda clays and their mixtures with oil shale ashes depending on the chemical and mineralogical composition of the clays as well as of the oil shale ashes studied.  相似文献   

5.
The growth of carbon layers, defective graphene, and graphene by deposition of polycyclic aromatic hydrocarbons (PAHs) on Cu(111) is studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy. Two different PAHs are used as starting materials: the buckybowl pentaindenocorannulene (PIC) which contains pentagonal rings and planar coronene (CR). For both precursors, with increasing sample temperature during deposition, porous carbon aggregates (350 °C), dense carbon layers (400–450 °C), disordered defective graphene (500 °C–550 °C), and extended graphene (≥600 °C) are obtained. No significant differences for defective graphene grown from PIC and CR are observed. C 1s X-ray photoelectron spectra of PIC and CR derived samples grown at 350–550 °C exhibit a characteristic C−Cu low binding energy component. Preparation at ≥600 °C eliminates this C−Cu species and only C−C bonded carbon remains.  相似文献   

6.
The effects of the inorganic matrix of the oil shale on the oxidation of the kerogen at temperatures up to 1000°C in an air atmosphere were investigated Kerogen was isolated by successive HCl, HF and LiAlH4 treatments. The initial shale and each product of every demineralization process were oxidized in a thermogravimetric system in an air atmosphere. The oxidation products were analyzed by Fourier transform infrared spectroscopy. Changes in the chemical structure of the organic material of the shale were correlated with the separated constituents of the inorganic matrix. Oxidation of the kerogen occurred in two stages. The first stage was complete at about 400°C. The oxidized product after the first stage contained a char of an aromatic ring system substituted with some aliphatic material and carbonyl groups. Calcium minerals increased the reactivity of the aromatic part of the organic material towards the oxidation reactions. Where calcium minerals were absent, mainly the aliphatic and the carbonyl groups decomposed. Silicates and pyrites did not affect the reactivity of the organic material in oxidation reactions.  相似文献   

7.
A commercially available analyzer for determination of sulfur (0.5–100%) in organic and some inorganic compounds is described. It involves combustion of the sample at high temperature (1050 °C) to form SO2 and SO3 in a vertical reactor. SO3 is reduced to SO2 and nitrogen oxides to N2 on copper at 850–900 °C. At this temperature the chemical reactions of SO2 and copper are minimized so that SO2 is obtained quantitatively in this range.Use of a vertical reactor and an autosampler makes an easy and complete automation of the sulfur determination possible. With this automation, great improvements are noticed in accuracy and precision over manual methods. The average time for a single determination is about 8 min.  相似文献   

8.
The carbon content of mesostructured organic‐inorganic hybrid material of a cylindrical block copolymer template of poly(2‐vinylpyridine)‐block‐poly(allyl methacrylate) (P2VP‐b‐PAMA) and ammonium paramolybdate (APM) could be reduced by thermal depolymerization. By calcination in vacuo at 320 °C the PAMA core can be completely removed while the remaining P2VP brush preserves the mesostructure. The P2VP‐APM composite can then be carburized in‐situ to MoOxCy in a second pyrolysis step without any additional carbon source but P2VP. The molybdenum oxycarbide nanotubes obtained, form hierarchically porous non‐woven structures, which were tested as catalyst in the decomposition of NH3. They proved to be catalytically active at temperatures above 450 °C. The activation energy was estimated from an Arrhenius Plot to be 127 kJ · mol–1.  相似文献   

9.
To enhance the photocatalytic activity under solar light, highly ordered TiO2 nanotube arrays (TNAs) film with anatase phase was fabricated on glass and successfully doped with carbon at various temperatures of 450–550 °C. The characterization results indicate that, after carbon doping, the TNAs still remained nanotubular structure with anatase phase. But their optical response shifted from UV to the visible light region and the recombination of photogenerated carriers was suppressed effectively. It is more important that the carbon-doped TNAs/glass (C-TNAs) samples exhibited high solar light photocatalytic activity, and 68%, 61% and 56% MO was photodegraded in 150 min by the C-TNAs calcined at 550, 500 and 450 °C, respectively. Especially, the apparent reaction rate constant of C-TNAs calcined at 550 (k, 0.065 min−1) with the highest activity is 3.6 times that of pristine anatase TNAs (k, 0.018 min−1). It is clear that carbon doping enhanced the photocatalytic activity under sunlight at optimized annealing temperature. The efficient activity could be attributed to the synergetic effects of strong visible light absorption, good crystallization, large surface, and enhanced separation of photoinduced carriers.  相似文献   

10.
Composite materials based on polyacrylonitrile with carbon nanofillers (technical-grade carbon, thermally expanded graphite, carbon nanotubes) were synthesized. A carbonization of film and fiber composite samples in the temperature range 20–1000°C provided a noticeable increase in the thermal stability of fibers and a rise in the electrical conductivity of the composite material. Dependences of the degree of carbonization on the concentration of nanostructures, type of material, and nature of modifier were determined. Differential-thermal and X-ray diffraction analyses revealed the formation of oriented nucleus structures of turbostratic carbon in the temperature range 450–550°C.  相似文献   

11.
Carbon steels (CSs) were anodized in an ethylene glycol solution containing 3 vol.% H2O and 0.1 m NH4F to coat with nanotube arrays film. The as anodized nanotube arrays film were annealed in argon atmosphere at various temperatures ranging from 250 to 550 °C for 4 h. The morphology and crystal phases of the film developed after annealing processes were examined using field emission scanning electron microscopy, X‐ray diffraction. Morphology transforms from nanobube arrays to nanotube bundles at 250 °C, to nanobube bundles with nanoflakes at 350 and 450 °C, to nanotube bundles with nanobelts at 550 °C. Amorphous transformed completely into maghemite at 350 °C and hematite with minor magnetite at 450 and 550 °C. Diffuse reflectance ultraviolet and visible spectra revealed iron oxide nanotube film annealed at 350 °C, or higher than 350 °C behaved tremendous absorbance ability in visible spectra range. Mott–Schottky analysis and linear scan voltammetry were performed in 1 m NaOH to show that iron oxide nanotube film annealed at 450 °C exhibited best charge carrier transfer ability upon illumination and superior photoelectrochemical properties compared with the films annealed at other temperatures. The film annealed at 450 °C displayed the photocurrent density of 0.13 mA cm?2 at 0.2 VAg/AgCl, but the film annealed at other temperatures with the photocurrent densities of lower than 0.05 mA cm?2 at 0.2 VAg/AgCl. The morphology and phase transform of iron oxide nanotube film at different annealing temperature results in the change of their photoelectrochemical properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This study aims to analyze thermal stability and make a rheological assessment of sunflower oil produced in the Northeast of Brazil, resulting from the pyrolysis process. Oil samples were submitted to thermal degradation and the reaction was evaluated by the thermogravimetric technique, at temperatures between 30 and 900?°C. Apparent activation energy was determined using the model-free kinetics theory. The coaxial cylinder system at operating temperature of 40?°C was used to obtain rheological parameters. Oil was characterized by gas chromatography. The lipid profile of the oil exhibited good quality. The activation energy of the sunflower oil was 201.2?kJ?mol?1. Results showed the influence of physical?Cchemical characteristics of vegetable oil on the thermal decomposition process. Rheological analyses confirmed Newtonian rheological behavior. The high potential of the ??Catissol?? variety produced in Northeast Brazil as raw material for biofuel production using pyrolysis was also demonstrated.  相似文献   

13.
An equilibrium isotherm on V-S system at 900°C was determined by changing partial pressure of sulfur. Single crystals of several V5S8 and V2S3 compounds were grown by chemical transport. The grown crystals almost satisfied compositional relation on equilibrium isotherms between 900°C (hot zone) and lower temperatures (cold zone). Electrical conductivity of the single crystals was measured at temperatures from liquid nitrogen to 25°C. It showed metallic behavior without any significant dependence on compositional variation. Also the conductivity measurement of sintered samples for various vanadium sulfides was carried out in the compositional range from VS1,38 (V3S4 phase) to VS1,58 (V5S8 phase).  相似文献   

14.
Heating rate effect on the DSC kinetics of oil shales   总被引:1,自引:0,他引:1  
This research was aimed to investigate the combustion and kinetics of oil shale samples (Mengen and Himmetoğlu) by differential scanning calorimetry (DSC). Experiments were performed in air atmosphere up to 600°C at five different heating rates. The DSC curves clearly demonstrate distinct reaction regions in the oil shale samples studied. Reaction intervals, peak and burn-out temperatures of the oil shale samples are also determined. Arrhenius kinetic method was used to analyze the DSC data and it was observed that the activation energies of the samples are varied in the range of 22.4–127.3 kJ mol−1 depending on the oil shale type and heating rate.  相似文献   

15.
《Comptes Rendus Chimie》2015,18(11):1205-1210
Nickel–aluminium and magnesium–aluminium hydrotalcites were prepared by co-precipitation and subsequently submitted to calcination. The mixed oxides obtained from the thermal decomposition of the synthesized materials were characterized by XRD, H2-TPR, N2 sorption and elemental analysis and subsequently tested in the reaction of methane dry reforming (DRM) in the presence of excess of methane (CH4/CO2/Ar = 2/1/7). DMR in the presence of the nickel-containing hydrotalcite-derived material showed CH4 and CO2 conversions of ca. 50% at 550 °C. The high values of the H2/CO molar ratio indicate that at 550 °C methane decomposition was strongly influencing the DRM process. The sample reduced at 900 °C showed better catalytic performance than the sample activated at 550 °C. The catalytic performance in isothermal conditions from 550 °C to 750 °C was also determined.  相似文献   

16.
Thermal analysis has been used to determine the impact of heating on the decomposition reaction of two Moroccan oil shales between ambient temperature and 500°C. During pyrolysis of raw oil shale, the residual organic matter (residual carbon) obtained for both shales depends on the heating rate (5 to 40°C min-1). Three stages characterize the overall process: the concentration of carbonaceous residue decreases with increase of heating rate, become stable around 12°C min-1 and continue to decrease at higher heating rates. Activation energies were determined using the Coats-Redfern method. Results show a change in the reaction mechanism at around 350°C. Below this temperature, the activation energy was 41.3 kJ mol-1 for the decomposition of Timahdit, and 40.5 kJ mol-1 for Tarfaya shale. Above this temperature the respective values are 64.3 and 61.3 kJ mol-1. The reactivity of Timahdit and Tarfaya oil shale residual carbon prepared at 12°C min-1 was subject to a dynamic air atmosphere to determine their thermal behaviour. Residual carbon obtained from Tarfaya oil shale is shown to be more reactive than that obtained from Timahdit oil shale. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Sucrose chelated Bismuth ferrite (BiFeO3) nanoparticles as a novel heterogeneous catalyst was synthesized by an auto combustion route. Different calcination temperatures (150 °C, 450 °C, 550 °C, 650 °C, 750 °C and 850 °C) have been employed to obtain single phased BiFeO3 nanoparticles. The perovskite structure formation and disappearance of organic phase (sucrose) was obtained by Fourier transform infrared spectroscopy (FT‐IR). Phase determination and structural characterization was carried out by powder X‐ray diffraction (XRD). The magnetic properties were analyzed by vibrating sample magnetometer (VSM) whereas surface area/pore volume was obtained by Brunauer–Emmett–Teller (BET). Transmission electron microscope (TEM) analyzed the particles size and morphology. Thermal stability was investigated by thermogravimetric analysis (TGA) and determination of constituent elements was carried out by X‐ray Photo‐Electron Spectroscopy (XPS). Raman spectroscopy confirmed the perovskite structure of the synthesized materials. The BiFeO3 nanoparticles so obtained were employed as heterogeneous catalyst for the synthesis of polyhydroquinoline derivatives. All the polyhydroquinoline derivatives were characterized by Fourier transform infrared spectroscopy (FT‐IR) and Nuclear magnetic resonance spectroscopy (1H NMR). For the very first time ever we have used BiFeO3 as a recyclable magnetic nanocatalyst in the one‐pot four component cyclization reaction of benzaldehyde, ethylacetoacetate/methylacetoacetate, dimedone/cyclohexane‐1,3‐dione, and ammonium acetate for the synthesis of polyhydroquinoline derivatives without solvent under refluxing conditions to provide excellent yields of products. BiFeO3 nanocatalyst (without any functionalization/surface coatings) shows easy magnetic separation, recyclability, reusability along with excellent yield of polyhydroquinoline derivatives in an economic and benign way.  相似文献   

18.
《Vibrational Spectroscopy》2000,22(1-2):75-86
Ni–Al hydrotalcite-like compounds with the general formula [Ni1−xAlx(OH)2](CO3)x/2⋅mH2O, where 0.25≤x≤0.66, were synthesised using coprecipitation at a constant pH, and were treated hydrothermally. The structures of the oxidic forms obtained by calcination of the hydrotalcites at 450°C and 900°C, respectively, were investigated using X-ray diffraction and, mainly, IR and UV–VIS spectroscopy. A NiO phase was identified by XRD in all calcined samples; an additional oxidic phase — the nickel spinel, NiAl2O4 — developed at 900°C. IR spectroscopy results gave supplementary information about the incipient, local organisation of cations in the interstices of the oxygen atoms lattice. IR spectra were different, depending on the samples' composition. In case of the HT precursors calcined at 450°C a structure like a transition alumina (γ-Al2O3) was found as a main oxidic phase in samples with a high Al-content; IR spectra of the samples with a high Ni content evidenced NiO as the main oxidic phase; in case of these latter samples, the formation of an oxidic structure with a spinel-type local order was identified at this temperature. This structure developed to an inverse nickel spinel oxidic phase at 900°C, as shown by the IR absorption bands. The NiO structure in the samples with a high Ni content at 450°C was found also in the oxides obtained by calcination at 900°C. The spinel-type local order was also observed by UV–VIS spectroscopy in case of the HT precursors calcined at 450°C, by the presence of both absorption bands of the tetrahedral and octahedral Ni(II) ions in the Al2O3 lattice and of octahedral Ni(II) ions in the NiO lattice. The same absorption bands were found also in the samples calcined at 900°C, proving that the NiAl2O4 spinel identified has a partial inverse structure, with the Ni(II) ions both in tetrahedral and octahedral crystalline fields. Our found structural data were in accord with the models proposed in the literature.  相似文献   

19.
Thermogravimetric (TG) data of oil sand obtained at Engineering Research Center of Oil Shale Comprehensive Utilization were studied to evaluate the kinetic parameters for Indonesian oil sand samples. Experiments were carried out at heating rates of 5, 15, and 25 °C min?1 in nitrogen, 10, 20, and 50 °C min?1 in oxygen atmosphere, respectively. The extent of char combustion was found out by relating TG data for pyrolysis and combustion with the ultimate analysis. Due to distinct behavior of oil shale during pyrolysis, TG curves were divided into three separate events: moisture release, devolatilization, and evolution of fixed carbon/char, where for each event, kinetic parameters, based on Arrhenius theory, were calculated. Coats–Redfern method, Flynn–Wall–Ozawa method, and distributed activation energy model method have been used to determine the activation energies of degradation. The methods are compared with regard to their characteristics and the ease of interpretation of the thermal kinetics. Activation energies of the samples were determined by three different methods and the results are discussed.  相似文献   

20.
Kinetic features for the carbon erosion (CE) of bulk NiCr alloy (NiCrA, nichrome wire 0.1 mm in diameter) were studied at 450–750°C under conditions of the catalytic decomposition of 1,2-dichloroethane vapor in a reductive atmosphere (H2). It was found that the CE process takes place more efficiently in the temperature range from 550 to 720°C, leading to the disintegration of the bulk alloy with the formation of a fibrous carbon product. The apparent activation energy of the process was estimated to be 16.8 ± 0.9 kJ/mol. The realization of CE is hampered outside the optimal temperature range because of chlorination (T < 500°C) or blocking of the alloy’s surface by carbonaceous deposits (T > 720°C). The kinetics of the process is characterized by the existence of an induction period, whose duration decreases with an increasing temperature (from 40 min at 550°C to 6 min at 710°C). According to scanning and transmission electron microscopy data, the submicron metallic particles (0.2–0.4 μm) catalyzing the growth of carbon fibers with disordered structure result from the disintegration of the NiCr alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号