首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mo掺杂TiO2/AC负载膜的制备及光催化活性   总被引:17,自引:0,他引:17  
溶胶-凝胶法;Mo掺杂TiO2/AC负载膜的制备及光催化活性  相似文献   

2.
Scanning Kelvin probe and electrochemical impedance spectroscopy were used to study the release behaviour of inhibitor anions doped in polypyrrole film (e.g. molybdate, 3-nitro salicylate). The polypyrrole coatings were formed on mild steel and zinc substrates in aqueous solution. It was shown that the release behaviour of the molybdate and 3-nitro salicylate anions depends on the size of cations in the electrolyte. The delamination is determined with the migration and incorporation of small cations.  相似文献   

3.
Electron spectroscopy, x-ray diffraction, and derivatographic analysis have been used to study the influence of the calcination temperature on the phase composition of catalysts obtained from a nickel-molybdenum complex applied to aluminum oxide. It has been established that the catalysts represent a system composed of the nickel molybdate and aluminate, and of their conversion products, formed in the reduction process.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 4, pp. 489–492, July–August, 1987.  相似文献   

4.
A ligand known to form a fluorescent complex with aluminum ion was immobilized on silica gel. The immobilization sequence was verified by cross-polarization magicangle spinning n.m.r. spectroscopy and diffuse reflectance u.v. spectroscopy. The solid-state fluorescence of the immobilized ligand complexed with aluminum ion was similar to the fluorescence of a solvated complex of a model ligand. The potential to eliminate possible interfering species by isolating the complex from solution was demonstrated.  相似文献   

5.
The synergistic effect of benzotriazole (BTAH) and molybdate on the inhibition of copper tarnish was studied in this paper. The antitarnish treatment of copper was conducted with BTAH solution containing molybdate. The surface morphology observation and composition analysis were investigated by SEM with energy dispersive X‐ray (EDX) spectroscopy. The addition of molybdate improved the protection of BTAH significantly. The BTAH + molybdate treated copper specimen has higher N concentration in its surface. The structure of the protective film was studied by XPS and AES measurements. It was characterized to be a complex of Cu(I)BTA. The antitarnish effect is certified by the formation of the protective Cu(I)BTA film. Molybdate does not participate in the formation of the protective film. The presence of molybdate promotes the passivation of copper. This facilitates the stabilization of the cuprous oxide film, and strengthens the adsorption of BTAH. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A method for selective extraction of uranium from carbonate solutions containing molybdate is reported. A liquid chromatography column, packed with N-β-aminoethyl-γ-ammopropyltrimethoxysilane immobilized on a glass substrate, was utilized in a continuous How system. The selective retention of the uranyl carbonate species [UO2(CO3)2? 2H2O]2- and UO2(CO3)4- on protonated immobilized diamine is the basis for this separation Recoveries of uranium and molybdenum from synthetic samples ranged from 96.7 to 113.4% for uranium and from 96.7 to 110.5% for molybdate for a range of recommended conditions.  相似文献   

7.
The immobilization of chiral oxazaborolidine complex in the well‐ordered mesochannels of SBA‐15 is demonstrated by a postsynthetic approach using 3‐aminopropyltriethoxysilane as a reactive surface modifier. The immobilized catalysts are characterized by various techniques, such as XRD, nitrogen adsorption, HRSEM, UV/Vis diffuse reflectance spectroscopy, and FTIR spectroscopy. The catalysts are used for the enantioselective reduction of aromatic prochiral ketones. The activity of the chiral oxazaborolidine complex immobilized SBA‐15 catalysts is also compared with that of the pure chiral oxazaborolidine complex, which is a homogeneous catalyst. It is found that the activity of the chiral complex immobilized SBA‐15 heterogeneous catalyst is comparable with that of the homogeneous catalyst.  相似文献   

8.
We report the immobilization of gold nanorods onto self-assembled monolayers (SAMs) of 16-mercaptohexadecanoic acid (16-MHA). The simple two step protocol involves formation of a SAM of 16-MHA molecules onto gold-coated glass slides and subsequent immersion of these slides into the gold nanorod solution. The nanorods, formed by a seed-mediated, surfactant-assisted synthesis protocol, are stabilized in solution due to surface modification by the surfactant cetyltrimethylammonium bromide (CTAB). Attractive electrostatic interactions between the carboxylic acid group on the SAM and the positively charged CTAB molecules are likely responsible for the nanorod immobilization. UV-vis spectroscopy has been used to follow the kinetics of the nanorod immobilization. The nature of interaction between the gold nanorods and the 16-MHA SAM has been probed by Fourier transform infrared spectroscopy (FTIR). The surface morphology of the immobilized rods is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements. SEM was also used to determine the density of the immobilized nanorods as a function of the pH of immobilization. Control over the surface coverage of the immobilized gold nanorods has been demonstrated by simple pH variation. Such well-dispersed immobilized gold nanorods with control over the surface coverage could be interesting substrates for applications such as surface-enhanced Raman spectroscopy (SERS).  相似文献   

9.
The authors have examined the application of the reaction in which the yellow silicomolybdate complex is formed to the estimation of silicon.Among other things, it was established that the development of the complex is complete and rapid in the cold between pH 4.0 and pH 1.0.The rate of formation of the complex decreases rapidly above this pH but can, to a certain extent, be compensated by raising the temperature and the concentration of molybdate.The Lambert-Beer law is followed between 3650 and 5000 A only when the light is strictly monochromatic. At wave-lengths longer than 4000 A and at pH below 3, a supplementary absorption appears which is without doubt due to a chemical transformation of the molybdate in acid solution.  相似文献   

10.
Palladium catalysts supported on zinc oxide modified with polyethylene glycol or pectin were synthesized and investigated in the hydrogenation of acetylene compounds. It was established that the polymercontaining catalysts reduce acetylene hyrbons to olefins with high activity, selectivity, and stability. The composition and structure of the obtained composites were studied by elemental analysis, transmission electron microscopy, and XPS spectroscopy. It was found that the nanosized particles of palladium uniformly immobilized on the surface of zinc oxide were formed in the course of the synthesis of a supported polymer/oxide complex.  相似文献   

11.
Isolated molybdate species supported on silica are reported to have the highest specific activity and selectivity for the direct oxidation of methane to formaldehyde. The present investigation was undertaken to understand the elementary redox processes involved in the formation of formaldehyde over such species. A MoO(x)/SiO(2) catalyst was prepared with a Mo loading of 0.44 Mo/nm(2). On the basis of evidence from extended X-ray absorption fine structure (EXAFS) and Raman spectroscopy, the Mo atoms in this catalyst are present as isolated, pentacoordinated molybdate species containing a single Mo=O bond. Isotopic labeling experiments in combination with in-situ Raman spectroscopy were used to examine the reducibility of the dispersed molybdate species and the exchange of O atoms between the gas phase and the catalyst. It was established that treatment of MoO(x)/SiO(2) at 873 K under pure methane reduces the dispersed molybdate species to only a limited extent and results mainly in the deposition of amorphous carbon. During CH(4) oxidation to formaldehyde, the catalyst undergoes only a very small degree of reduction and typically only approximately 50-500 ppm of Mo(VI) is reduced to Mo(IV). Reactions carried out using CH(4) and (18)O(2) show that there is extensive scrambling of O atoms between the species in the gas phase and the catalyst. Additional experiments revealed that H(2)O formed in the reaction is the principal species responsible for the exchange of O atoms between the gas phase and the SiO(2) support. Low concentrations of H(2)O were observed to enhance the activity of MoO(x)/SiO(2) for CH(4) oxidation to formaldehyde. A mechanism for the oxidation of CH(4) over MoO(x)/SiO(2) was formulated in light of the observations made here and is discussed in the light of previous studies. It is proposed that peroxides are produced by the reaction of O(2) with a small concentration of reduced molybdate species and that the reaction of CH(4) with these peroxide species leads to the formation of formaldehyde. The proposed mechanism also accounts for the positive effects of low concentrations of H(2)O on the rate of formaldehyde formation.  相似文献   

12.
Molybdate uptake and molybdenum cofactor (Moco) biosynthesis were investigated in detail in the last few decades. The present study critically reviews our present knowledge about eukaryotic molybdate transporters (MOT) and focuses on the model plant Arabidopsis thaliana, complementing it with new experiments, filling missing gaps, and clarifying contradictory results in the literature. Two molybdate transporters, MOT1.1 and MOT1.2, are known in Arabidopsis, but their importance for sufficient molybdate supply to Moco biosynthesis remains unclear. For a better understanding of their physiological functions in molybdate homeostasis, we studied the impact of mot1.1 and mot1.2 knock-out mutants, including a double knock-out on molybdate uptake and Moco-dependent enzyme activity, MOT localisation, and protein–protein interactions. The outcome illustrates different physiological roles for Moco biosynthesis: MOT1.1 is plasma membrane located and its function lies in the efficient absorption of molybdate from soil and its distribution throughout the plant. However, MOT1.1 is not involved in leaf cell imports of molybdate and has no interaction with proteins of the Moco biosynthesis complex. In contrast, the tonoplast-localised transporter MOT1.2 exports molybdate stored in the vacuole and makes it available for re-localisation during senescence. It also supplies the Moco biosynthesis complex with molybdate by direct interaction with molybdenum insertase Cnx1 for controlled and safe sequestering.  相似文献   

13.
Ran Q  Peng R  Liang C  Ye S  Xian Y  Zhang W  Jin L 《Analytica chimica acta》2011,697(1-2):27-31
In this paper, a simple two-step approach for redox protein immobilization was introduced. Firstly, alkynyl-terminated film was formed on electrode surface by electrochemical reduction of 4-ethylnylphenyl (4-EP) diazonium compound. Then, horseradish peroxidase (HRP) modified with azido group was covalently immobilized onto the electrografted film via click reaction. Reflection absorption infrared (RAIR) spectroscopy and electrochemical methods were used to characterize the modification process. The results indicate that HRP retains its native structure and shows fast direct electron transfer. Moreover, the immobilized HRP shows excellent electrocatalytic reduction activity toward H(2)O(2) with a linear range of 5.0×10(-6) to 9.3×10(-4) mol L(-1).  相似文献   

14.
Short oligopeptides that complex with metal ions with high affinity and high specificity are of interest to the design of chemical sensors. In this study, we compare the complexation properties of two copper-selective tripeptides, Gly-Gly-His and His-Gly-Gly, either in aqueous solutions or immobilized on solid surfaces. Our results show that the copper complex formed by Gly-Gly-His is more stable than the complex formed by His-Gly-Gly in aqueous solutions, because the position of histidine (His) in the Gly-Gly-His permits the formation of a tetragonal copper complex with a high stability. However, when the tripeptides are immobilized on aldehyde-decorated silicon wafer surfaces under a reaction condition that gives rise to near maximum surface densities of tripeptides, both immobilized Gly-Gly-His and His-Gly-Gly experience strong steric hindrance on the over-crowded surfaces. The surface crowding effect causes less complexation with copper ions than that in aqueous solutions. To ensure a proper surface density on the surface for complexation with copper ions, a so-called two-dimensional (2D) metal-ion imprinting technique is employed to avoid the surface crowdedness. By immobilizing Gly-Gly-His in the presence of copper ions, we create a tripeptide-functionalized surface that exhibits high complexation capability for copper ions. We attribute the higher copper complexation capability to the proper intermolecular distances obtained from the ion-imprinting procedure that gives the copper-tripeptide complex a preferential tetragonal geometry. Our results show that the amounts of copper complexed to a copper-imprinted surface functionalized with Gly-Gly-His are 62% higher than those of a nonimprinted surface.  相似文献   

15.
The adsorption of sodium acetohydroxamate on the goethite or hematite surface was investi-gated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy and periodic plane-wave density functional theory (DFT) calculations. The core-level shifts and charge transfers of the adsorbed surface iron sites calculated by DFT with periodic in-terfacial structures were confronted to the X-ray photoemission experiments. FT-IR results reveal that the interfacial structure of sodium acetohydroxamate adsorbed on the goethite or hematite surface may be assigned to a ve-membered ring complex. In agreement with the adsorption energies determined by the DFT calculations, a ve-membered ring complex is formed via bonding of one surface iron atom of goethite (101) or (100) to both oxygen atoms of hydroxamate group, and these two oxygen atoms of the hydroxamate group correspond-ingly attach to two neighboring iron atoms of the goethite surface. But a ve-membered ring complex between two oxygen atoms of the hydroxamate group and one surface iron atom of hematite (001) is formed without any extra attachments. The calculated core-level shifts of Fe2p for the interfacial structures are correspondingly in good agreement with the experimental observed one, which con rmed the reliability of the calculated results.  相似文献   

16.
《中国化学会会志》2017,64(11):1326-1332
Different bismuth molybdate catalysts for the selective oxidation of propylene to acrolein were prepared by the sol–gel method, starting from bismuth nitrate, ammonium molybdate, and citric acid. The influence of pH value and theoretical molar Bi/Mo atomic ratio on the complexation and gelation is surveyed using IR spectroscopy, X‐ray diffraction, and BET. Their catalytic activities for the conversion propylene to acrolein are examined.  相似文献   

17.
When a pincer-ligated iridium complex with a phosphinite substituent in the para-position of the aromatic backbone is immobilized on γ-alumina, it becomes a highly effective supported catalyst for the transfer-dehydrogenation of alkanes. The nature of the interaction between the organometallic complex and the support was investigated using solid-state (31)P MAS NMR spectroscopy, solution-state (1)H and (31)P{(1)H} NMR spectroscopy, IR and GC/MS analysis of extracted reaction products. The phosphinite substituent is cleaved from the pincer ligand by its reaction with hydroxyl groups on the γ-alumina surface, resulting in covalent anchoring of the complex via the aryl ring. A similar reaction occurs on silica, allowing for ready grafting onto this support as well. A strategy for anchoring homogeneous catalysts on hydroxyl-terminated oxide supports though the selective cleavage of [POR]-containing ligand substituents is suggested.  相似文献   

18.
A new, rapid and simple spot test has been developed for detection of both cyanide ion and cyanogen gas. The cyanogen gas must first be converted into cyanide ion by reaction with sodium hydroxide. On addition of a Cu(II) solution the cyanocuprate(I) complex formed reduces the molybdate solution to molybdenum blue.  相似文献   

19.
A procedure is reported for the kinetic determination of iodate/periodate mixtures based on the reduction of these anions by the iron(II)/dipyridylglyoxal dithiosemicarbazone complex in an acidic medium. The reaction is monitored spectrophotometrically at 410 nm (absorption maximum of the iron(III) complex formed). Mixtures of these anions at μg ml?1 levels for iodate/periodate ratios from 5:1 to 1:4 can be determined with a r.s.d, of ca. 3%. Molybdate is used to mask periodate to allow iodate to be determined alone. The sum of both anions is obtained in the absence of molybdate. Chromate, hypochlorite and hexacyanoferrate(III) interfere seriously.  相似文献   

20.
Spectroscopic and crystallographic studies were undertaken to gain insight into the mechanism of the highly regio- and enantioselective allylic aklylation reaction catalyzed by molybdenum. The chiral ligand (L*) consisting of the mixed benzamide/picolinamide of (S,S,)-trans-1,2-diaminocyclohexane reacts with a typical Mo precatalyst, (norbornadiene)Mo(CO)4, to give a neutral complex L*Mo(CO)4 in which the ligand binds to the metal in a bidentate fashion through the pyridine and adjacent amide group. Reaction of this complex with the methyl carbonate of cinnamyl alcohol gives the corresponding pi-allyl complex L*(CO)2Mo(eta3-CH2=CH-CHPh). NMR and X-ray crystallographic characterization of this complex reveal the ligand binds in a facially capping tridentate fashion via the pyridine nitrogen, the nitrogen of the adjacent amide group, which has now been deprotonated, and the carbonyl oxygen of the remote amide. Surprisingly, the face of the allyl group open to attack with nucleophiles is that which would lead to the sense of stereochemistry opposite to that which is observed in catalytic reactions. Furthermore, the allyl complex in its isolated form is unreactive toward sodium dimethyl malonate. However, in the presence of a source of carbon monoxide (either Mo(CO)6 or gaseous CO), the allyl complex reacts with malonate to give the typically observed branched alkylated product in high yield and enantiomeric excess. The metal-containing product of this reaction is the molybdate complex [L*Mo(CO)4]-Na+. Reaction of the molybdate complex with linear or branched allylic carbonates regenerates the allyl complex, thus closing the catalytic cycle. Both the allyl complex and the molybdate complex are the only metal-containing species observed by NMR in typical catalytic reactions and thus appear to be catalyst resting states. Turnover of the catalytic cycle therefore involves shuttling of carbon monoxide between the two catalyst resting states. Coordination of CO appears to be necessary to activate the allyl complex toward nucleophilic attack, in effect stabilizing the molybdenum fragment as a leaving group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号