首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This paper considers efficiency of a Decision Making Unit (DMU) in Data Envelopment Analysis (DEA) with a generalized additive model and a categorical structure. Specifically, it extends the categorical framework in DEA for controllable and noncontrollable situations, and it gives simple, but powerful, tests to determine whether or not a given DMU is efficient.  相似文献   

2.
Data envelopment analysis (DEA) is a useful tool of efficiency measurement for firms and organizations. Kao and Hwang (2008) take into account the series relationship of the two sub-processes in a two-stage production process, and the overall efficiency of the whole process is the product of the efficiencies of the two sub-processes. To find the largest efficiency of one sub-process while maintaining the maximum overall efficiency of the whole process, Kao and Hwang (2008) propose a solution procedure to accomplish this purpose. Nevertheless, one needs to know the overall efficiency of the whole process before calculating the sub-process efficiency. In this note, we propose a method that is able to find the sub-process and overall efficiencies simultaneously.  相似文献   

3.
Sensitivity analysis of extreme efficient DMUs was studied by Zhu (J. Zhu, EOR 90 (3) (1996) 451–460) using the modified CCR (A. Charnes, W.W. Cooper, E. Rhodes, EOR 2 (1978) 429–444) model. Upward proportional variations of inputs and downward proportional variations of outputs were considered. The procedure suggested by Zhu is a new approach to sensitivity analysis and can result in sufficient and necessary conditions on the changes which do not alter the efficiency of DMUs. However, in certain instances the results presented by Zhu do not hold. The aim of this note is to point out shortcomings which can be met following procedure proposed by Zhu. This includes inefficiency of so-called projected points, domination of obtained hyperplane, case of simultaneos changes of inputs and outputs, and case of infeasibility even if all data are greater than 0.  相似文献   

4.
In the additive approach of two-stage network data envelopment analysis (DEA), the non-linear DEA model is transformed into a parametric linear model and then solved by computing a series of linear programs. Lim and Zhu (2013; Integrated data envelopment analysis: Global vs. local optimum.European Journal of Operational Research, 229(1), 276–278) and Ang and Chen (2016; Pitfalls of decomposition weights in the additive multi-stage DEA model. Omega, 58, 139–153) propose two parametric linear approaches to solve additive two-stage network DEA model. The current study shows that the two approaches are equivalent and use the same parameter in searching for the global optimal solution.  相似文献   

5.
Data envelopment analysis (DEA) is a method to estimate the relative efficiency of decision-making units (DMUs) performing similar tasks in a production system that consumes multiple inputs to produce multiple outputs. So far, a number of DEA models with interval data have been developed. The CCR model with interval data, the BCC model with interval data and the FDH model with interval data are well known as basic DEA models with interval data. In this study, we suggest a model with interval data called interval generalized DEA (IGDEA) model, which can treat the stated basic DEA models with interval data in a unified way. In addition, by establishing the theoretical properties of the relationships among the IGDEA model and those DEA models with interval data, we prove that the IGDEA model makes it possible to calculate the efficiency of DMUs incorporating various preference structures of decision makers.  相似文献   

6.
In this paper, additive model is used to provide an alternative approach for estimating returns to scale in data envelopment analysis. The proposed model is developed in both stochastic and fuzzy data envelopment analysis. Deterministic (crisp) equivalents are obtained which correspond to the stochastic and fuzzy models. Numerical examples are, also, used to illustrate the proposed approaches.  相似文献   

7.
Input and output data, under uncertainty, must be taken into account as an essential part of data envelopment analysis (DEA) models in practice. Many researchers have dealt with this kind of problem using fuzzy approaches, DEA models with interval data or probabilistic models. This paper presents an approach to scenario-based robust optimization for conventional DEA models. To consider the uncertainty in DEA models, different scenarios are formulated with a specified probability for input and output data instead of using point estimates. The robust DEA model proposed is aimed at ranking decision-making units (DMUs) based on their sensitivity analysis within the given set of scenarios, considering both feasibility and optimality factors in the objective function. The model is based on the technique proposed by Mulvey et al. (1995) for solving stochastic optimization problems. The effect of DMUs on the product possibility set is calculated using the Monte Carlo method in order to extract weights for feasibility and optimality factors in the goal programming model. The approach proposed is illustrated and verified by a case study of an engineering company.  相似文献   

8.
The user of data envelopment analysis (DEA) has little available guidance on model quality. The technique offers none of the misspecification tests or goodness of fit statistics developed for parametric statistical methods. Yet, if a DEA model is to guide managerial policy, the quality of the model is of crucial importance. This paper suggests four alternative purposes of DEA modelling, and offers four measures of the quality of a DEA model which reflect those purposes. Using Monte Carlo simulation methods, it explores the performance of DEA under a wide variety of assumptions. It notes that four issues will have an important influence on model results: the distribution of true efficiencies in the study sample; the size of the sample; the number of inputs and outputs included in the analysis; and the degree of correlation between inputs and outputs. The paper concludes that any judgement about the reliability of model results must be dependent on the objective of the analysis.  相似文献   

9.
Data envelopment analysis (DEA) is designed to maximize the efficiency of a given decision-making unit (DMU) relative to all other DMUs by the choice of a set of input and output weights. One strength of the original models is the absence of any need of a priori information about the process of transforming inputs into outputs. However, in the practical application of DEA models, this strength has also become a weakness. Incorporation of process knowledge is more a norm than an exception in practice, and typically involves placing constraints on the input and/or output weights. New DEA formulations have evolved to address this issue. However, existing formulations for weight restrictions may underestimate relative efficiency or even render a problem infeasible. A new model formulation is introduced to address this issue. This formulation represents a significant improvement over existing DEA models by providing a generalized, comprehensive treatment for weight restrictions.  相似文献   

10.
Data envelopment analysis (DEA) and stochastic multicriteria acceptability analysis (SMAA-2) are methods for evaluating alternatives based on multiple criteria. While DEA is mainly an ex-post tool used for classifying alternatives into efficient and inefficient ones, SMAA-2 is an ex-ante tool for supporting multiple criteria decision-making. Both methods use a kind of value function where the importance of criteria is modeled using weights. Unlike many other methods, neither DEA nor SMAA-2 requires decision-makers’ weights as input. Instead, these so-called non-parametric methods explore the weight space in order to identify weights favorable for each alternative. This paper introduces the SMAA-D method, which is a combination of DEA and SMAA-2. SMAA-D can be characterized as an extension of DEA to handle uncertain or imprecise data to provide stochastic efficiency measures. Alternatively, the combined method can be seen as a variant of SMAA-2 with a DEA-type value function.  相似文献   

11.
Longitudinal study has become one of the most commonly adopted designs in medical research. The generalized estimating equations (GEE) method and/or mixed effects models are employed very often in causal inferences. The related model diagnostic procedures are not yet fully formalized, and perhaps never will be. The potential causes of major problems are the high variety of the dependence within subjects and/or the number of repeated measurements. A single testing procedure, e.g., run test, is not possible to resolve all model diagnostics problems in longitudinal data analysis. Multiple quantitative indexes for model diagnostics are needed to take into account this variety. We propose eight testing procedures for randomness accompanied with some conventional and/or non-conventional plots to remedy model diagnostics in longitudinal data analysis. The proposed issue in this paper is well illustrated with four clinical studies in Taiwan.  相似文献   

12.
Traditional studies in data envelopment analysis (DEA) view systems as a whole when measuring the efficiency, ignoring the operation of individual processes within a system. This paper builds a relational network DEA model, taking into account the interrelationship of the processes within the system, to measure the efficiency of the system and those of the processes at the same time. The system efficiency thus measured more properly represents the aggregate performance of the component processes. By introducing dummy processes, the original network system can be transformed into a series system where each stage in the series is of a parallel structure. Based on these series and parallel structures, the efficiency of the system is decomposed into the product of the efficiencies of the stages in the series and the inefficiency slack of each stage into the sum of the inefficiency slacks of its component processes connected in parallel. With efficiency decomposition, the process which causes the inefficient operation of the system can be identified for future improvement. An example of the non-life insurance industry in Taiwan illustrates the whole idea.  相似文献   

13.
This work introduces a bi-objective generalized data envelopment analysis (Bi-GDEA) model and defines its efficiency. We show the equivalence between the Bi-GDEA efficiency and the non-dominated solutions of the multi-objective programming problem defined on the production possibility set (PPS) and discuss the returns to scale under the Bi-GDEA model. The most essential contribution is that we further define a point-to-set mapping and the mapping projection of a decision making unit (DMU) on the frontier of the PPS under the Bi-GDEA model. We give an effective approach for the construction of the point-to-set-mapping projection which distinguishes our model from other non-radial models for simultaneously considering input and output. The Bi-GDEA model represents decision makers’ specific preference on input and output and the point-to-set mapping projection provides decision makers with more possibility to determine different input and output alternatives when considering efficiency improvement. Numerical examples are employed for the illustration of the procedure of point-to-set mapping.  相似文献   

14.
This paper proposes a dynamic data envelopment analysis (DEA) model to measure the system and period efficiencies at the same time for multi-period systems, where quasi-fixed inputs or intermediate products are the source of inter-temporal dependence between consecutive periods. A mathematical relationship is derived in which the complement of the system efficiency is a linear combination of those of the period efficiencies. The proposed model is also more discriminative than the existing ones in identifying the systems with better performance. Taiwanese forests, where the forest stock plays the role of quasi-fixed input, are used to illustrate this approach. The results show that the method for calculating the system efficiency in the literature produces over-estimated scores when the dynamic nature is ignored. This makes it necessary to conduct a dynamic analysis whenever data is available.  相似文献   

15.
Data envelopment analysis (DEA) is popularly used to evaluate relative efficiency among public or private firms. Most DEA models are established by individually maximizing each firm's efficiency according to its advantageous expectation by a ratio. Some scholars have pointed out the interesting relationship between the multiobjective linear programming (MOLP) problem and the DEA problem. They also introduced the common weight approach to DEA based on MOLP. This paper proposes a new linear programming problem for computing the efficiency of a decision-making unit (DMU). The proposed model differs from traditional and existing multiobjective DEA models in that its objective function is the difference between inputs and outputs instead of the outputs/inputs ratio. Then an MOLP problem, based on the introduced linear programming problem, is formulated for the computation of common weights for all DMUs. To be precise, the modified Chebychev distance and the ideal point of MOLP are used to generate common weights. The dual problem of this model is also investigated. Finally, this study presents an actual case study analysing R&D efficiency of 10 TFT-LCD companies in Taiwan to illustrate this new approach. Our model demonstrates better performance than the traditional DEA model as well as some of the most important existing multiobjective DEA models.  相似文献   

16.
This paper first presents several formulas for mean chance distributions of triangular fuzzy random variables and their functions, then develops a new class of fuzzy random data envelopment analysis (FRDEA) models with mean chance constraints, in which the inputs and outputs are assumed to be characterized by fuzzy random variables with known possibility and probability distributions. According to the established formulas for the mean chance distributions, we can turn the mean chance constraints into their equivalent stochastic ones. On the other hand, since the objective in the FRDEA model is the expectation about the ratio of the weighted sum of outputs and the weighted sum of inputs for a target decision-making unite (DMU), for general fuzzy random inputs and outputs, we suggest an approximation method to evaluate the objective; and for triangular fuzzy random inputs and outputs, we propose a method to reduce the objective to its equivalent stochastic one. As a consequence, under the assumption that the inputs and the outputs are triangular fuzzy random vectors, the proposed FRDEA model can be reduced to its equivalent stochastic programming one, in which the constraints contain the standard normal distribution function, and the objective is the expectation for a function of the normal random variable. To solve the equivalent stochastic programming model, we design a hybrid algorithm by integrating stochastic simulation and genetic algorithm (GA). Finally, one numerical example is presented to demonstrate the proposed FRDEA modeling idea and the effectiveness of the designed hybrid algorithm.  相似文献   

17.
《Optimization》2012,61(11):2441-2454
Inverse data envelopment analysis (InDEA) is a well-known approach for short-term forecasting of a given decision-making unit (DMU). The conventional InDEA models use the production possibility set (PPS) that is composed of an evaluated DMU with current inputs and outputs. In this paper, we replace the fluctuated DMU with a modified DMU involving renewal inputs and outputs in the PPS since the DMU with current data cannot be allowed to establish the new PPS. Besides, the classical DEA models such as InDEA are assumed to consider perfect knowledge of the input and output values but in numerous situations, this assumption may not be realistic. The observed values of the data in these situations can sometimes be defined as interval numbers instead of crisp numbers. Here, we extend the InDEA model to interval data for evaluating the relative efficiency of DMUs. The proposed models determine the lower and upper bounds of the inputs of a given DMU separately when its interval outputs are changed in the performance analysis process. We aim to remain the current interval efficiency of a considered DMU and the interval efficiencies of the remaining DMUs fixed or even improve compared with the current interval efficiencies.  相似文献   

18.
The concept of efficiency in data envelopment analysis (DEA) is defined as weighted sum of outputs/weighted sum of inputs. In order to calculate the maximum efficiency score, each decision making unit (DMU)’s inputs and outputs are assigned to different weights. Hence, the classical DEA allows the weight flexibility. Therefore, even if they are important, the inputs or outputs of some DMUs can be assigned zero (0) weights. Thus, these inputs or outputs are neglected in the evaluation. Also, some DMUs may be defined as efficient even if they are inefficient. This situation leads to unrealistic results. Also to eliminate the problem of weight flexibility, weight restrictions are made in DEA. In our study, we proposed a new model which has not been published in the literature. We describe it as the restricted data envelopment analysis ((ARIII(COR))) model with correlation coefficients. The aim for developing this new model, is to take into account the relations between variables using correlation coefficients. Also, these relations were added as constraints to the CCR and BCC models. For this purpose, the correlation coefficients were used in the restrictions of input–output each one alone and their combination together. Inputs and outputs are related to the degree of correlation between each other in the production. Previous studies did not take into account the relationship between inputs/outputs variables. So, only with expert opinions or an objective method, weight restrictions have been made. In our study, the weights for input and output variables were determined, according to the correlations between input and output variables. The proposed new method is different from other methods in the literature, because the efficiency scores were calculated at the level of correlations between the input and/or output variables.  相似文献   

19.
A decision aid to assist the development of a linear valuation function for multiple attribute problems is proposed, based on a linear programming formulation using a constraint set structured in a similar manner to data envelopment analysis (DEA). Value functions which favour each decision option are calculated, and efficient, potentially optimal, options identified. These are used to help a decision maker progressively to articulate preferences, indicators of his/her values, in an interactive, structurally flexible manner. As preference indications are provided, candidate value functions and hitherto efficient options inconsistent with his/her declarations are eliminated, thus proceeding towards an explicit value function and, if needed a corresponding complete option order.  相似文献   

20.
Data Envelopment Analysis (DEA) offers a piece-wise linear approximation of the production frontier. The approximation tends to be poor if the true frontier is not concave, eg in case of economies of scale or of specialisation. To improve the flexibility of the DEA frontier and to gain in empirical fit, we propose to extend DEA towards a more general piece-wise quadratic approximation, called Quadratic Data Envelopment Analysis (QDEA). We show that QDEA gives statistically consistent estimates for all production frontiers with bounded Hessian eigenvalues. Our Monte-Carlo simulations suggest that QDEA can substantially improve efficiency estimation in finite samples relative to standard DEA models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号