首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In competitive location theory, one wishes to optimally choose the locations ofr facilities to compete againstp existing facilities for providing service (or goods) to the customers who are at given discrete points (or nodes). One normally assumes that: (a) the level of demand of each customer is fixed (i.e. this demand is not a function of how far a customer is from a facility), and (b) the customer always uses the closest available facility. In this paper we study competitive locations when one or both of the above assumptions have been relaxed. In particular, we show that for each case and under certain assumptions, there exists a set of optimal locations which consists entirely of nodes.This work was supported by a National Science Foundation Grant ECS-8121741.  相似文献   

2.
We consider a generalization of the uncapacitated facility location problem, where the setup cost for a facility and the price charged for service may depend on the number of customers patronizing the facility. Customers are represented by the nodes of the transportation network, and facilities can be located only at nodes; a customer selects a facility to patronize so as to minimize his (her) expenses (price for service + the part of transportation costs paid by the customer). We assume that transportation costs are paid partially by the service company and partially by customers. The objective is to choose locations for facilities and balanced prices so as to either minimize the expenses of the service company (the sum of the total setup cost and the total part of transportation costs paid by the company), or to maximize the total profit. A polynomial-time dynamic programming algorithm for the problem on a tree network is developed.  相似文献   

3.
A firm wants to locate several multi-server facilities in a region where there is already a competitor operating. We propose a model for locating these facilities in such a way as to maximize market capture by the entering firm, when customers choose the facilities they patronize, by the travel time to the facility and the waiting time at the facility. Each customer can obtain the service or goods from several (rather than only one) facilities, according to a probabilistic distribution. We show that in these conditions, there is demand equilibrium, and we design an ad hoc heuristic to solve the problem, since finding the solution to the model involves finding the demand equilibrium given by a nonlinear equation. We show that by using our heuristic, the locations are better than those obtained by utilizing several other methods, including MAXCAP, p-median and location on the nodes with the largest demand.  相似文献   

4.
In this paper, we consider the problem of making simultaneous decisions on the location, service rate (capacity) and the price of providing service for facilities on a network. We assume that the demand for service from each node of the network follows a Poisson process. The demand is assumed to depend on both price and distance. All facilities are assumed to charge the same price and customers wishing to obtain service choose a facility according to a Multinomial Logit function. Upon arrival to a facility, customers may join the system after observing the number of people in the queue. Service time at each facility is assumed to be exponentially distributed. We first present several structural results. Then, we propose an algorithm to obtain the optimal service rate and an approximate optimal price at each facility. We also develop a heuristic algorithm to find the locations of the facilities based on the tabu search method. We demonstrate the efficiency of the algorithms numerically.  相似文献   

5.
We are interested in locations of multiple facilities in the plane with the aim of minimizing the sum of weighted distance between these facilities and regional customers, where the distance between a facility and a regional customer is evaluated by the farthest distance from this facility to the demand region. By applying the well-known location-allocation heuristic, the main task for solving such a problem turns out to solve a number of constrained Weber problems (CWPs). This paper focuses on the computational contribution in this topic by developing a variant of the classical Barzilai-Borwein (BB) gradient method to solve the reduced CWPs. Consequently, a hybrid Cooper type method is developed to solve the problem under consideration. Preliminary numerical results are reported to verify the evident effectiveness of the new method.  相似文献   

6.
In this paper, we present the problem of optimizing the location and pricing for a set of new service facilities entering a competitive marketplace. We assume that the new facilities must charge the same (uniform) price and the objective is to optimize the overall profit for the new facilities. Demand for service is assumed to be concentrated at discrete demand points (customer markets); customers in each market patronize the facility providing the highest utility. Customer demand function is assumed to be elastic; the demand is affected by the price, facility attractiveness, and the travel cost for the highest-utility facility. We provide both structural and algorithmic results, as well as some managerial insights for this problem. We show that the optimal price can be selected from a certain finite set of values that can be computed in advance; this fact is used to develop an efficient mathematical programming formulation for our model.  相似文献   

7.
This paper studies a facility location problem with stochastic customer demand and immobile servers. Motivated by applications to locating bank automated teller machines (ATMs) or Internet mirror sites, these models are developed for situations in which immobile service facilities are congested by stochastic demand originating from nearby customer locations. Customers are assumed to visit the closest open facility. The objective of this problem is to minimize customers' total traveling cost and waiting cost. In addition, there is a restriction on the number of facilities that may be opened and an upper bound on the allowable expected waiting time at a facility. Three heuristic algorithms are developed, including a greedy-dropping procedure, a tabu search approach and an -optimal branch-and-bound method. These methods are compared computationally on a bank location data set from Amherst, New York.  相似文献   

8.
This paper considers the impact of congestion on the spatial distribution of customer utilization of service facilities in a stochastic-dynamic environment. Previous research has assumed that the rate of demand for service is independent of the attributes of the facilities. We consider the more general case in which facility utilization is determined both by individual facility choice (based on the stochastic disaggregate choice mechanism) and by the rate of demand for service. We develop generalized results for proving that equilibria exist and describe sufficient conditions for the uniqueness and global stability of these equilibria. These conditions depend upon the elasticity of demand with respect to the level of congestion at the facilities, and on whether customers are congestion-averse or are congestion-loving. Finally, we examine special cases when these conditions are satisfied.  相似文献   

9.
In this paper we propose a new model for the p-median problem. In the standard p-median problem it is assumed that each demand point is served by the closest facility. In many situations (for example, when demand points are communities of customers and each customer makes his own selection of the facility) demand is divided among the facilities. Each customer selects a facility which is not necessarily the closest one. In the gravity p-median problem it is assumed that customers divide their patronage among the facilities with the probability that a customer patronizes a facility being proportional to the attractiveness of that facility and to a decreasing utility function of the distance to the facility.  相似文献   

10.
In this paper, we consider the capacitated multi-facility Weber problem with rectilinear distance. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the rectilinear distance separating them. We first give a new mixed integer linear programming formulation of the problem by making use of a well-known necessary condition for the optimal facility locations. We then propose new heuristic solution methods based on this formulation. Computational results on benchmark instances indicate that the new methods can provide very good solutions within a reasonable amount of computation time.  相似文献   

11.
We consider the discrete version of the competitive facility location problem in which new facilities have to be located by a new market entrant firm to compete against already existing facilities that may belong to one or more competitors. The demand is assumed to be aggregated at certain points in the plane and the new facilities can be located at predetermined candidate sites. We employ Huff's gravity-based rule in modelling the behaviour of the customers where the probability that customers at a demand point patronize a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. The objective of the firm is to determine the locations of the new facilities and their attractiveness levels so as to maximize the profit, which is calculated as the revenue from the customers less the fixed cost of opening the facilities and variable cost of setting their attractiveness levels. We formulate a mixed-integer nonlinear programming model for this problem and propose three methods for its solution: a Lagrangean heuristic, a branch-and-bound method with Lagrangean relaxation, and another branch-and-bound method with nonlinear programming relaxation. Computational results obtained on a set of randomly generated instances show that the last method outperforms the others in terms of accuracy and efficiency and can provide an optimal solution in a reasonable amount of time.  相似文献   

12.
We formulate a model for locating multiple-server, congestible facilities. Locations of these facilities maximize total expected demand attended over the region. The effective demand at each node is elastic to the travel time to the facility, and to the congestion at that facility. The facilities to be located are fixed, so customers travel to them in order to receive service or goods, and the demand curves at each demand node (which depend on the travel time and the queue length at the facility), are known. We propose a heuristic for the resulting integer, nonlinear formulation, and provide computational experience.  相似文献   

13.
This paper extends the location-allocation formulation by making the cost charged to users by a facility a function of the total number of users patronizing the facility. Users select their facility based on facility charges and transportation costs. We explore equilibria where each customer selects the least expensive facility (cost and transportation) and where the facility is at a point that minimizes travel costs for its customers. The problem in its general form is quite complex. An interesting special case is studied: facilities and customers are located on a finite line segment and demand is distributed on the line by a given density function.  相似文献   

14.
Abstract

This article presents a perishable stochastic inventory system under continuous review at a service facility in which the waiting hall for customers is of finite size M. The service starts only when the customer level reaches N (< M), once the server has become idle for want of customers. The maximum storage capacity is fixed as S. It is assumed that demand for the commodity is of unit size. The arrivals of customers to the service station form a Poisson process with parameter λ. The individual customer is issued a demanded item after a random service time, which is distributed as negative exponential. The items of inventory have exponential life times. It is also assumed that lead time for the reorders is distributed as exponential and is independent of the service time distribution. The demands that occur during stock out periods are lost.The joint probability distribution of the number of customers in the system and the inventory levels is obtained in steady state case. Some measures of system performance in the steady state are derived. The results are illustrated with numerical examples.  相似文献   

15.
Suppose that customers are situated at the nodes of a transportation network, and a service company plans to locate a number of facilities that will serve the customers. The objective is to minimize the sum of the total setup cost and the total transportation cost. The setup cost of a facility is demand-dependent, that is, it depends on the number of customers that are served by the facility. Centralized allocation of customers to facilities is assumed, that is, the service company makes a decision about allocation of customers to facilities. In the case of a general network, the model can be formulated as a mixed integer programming problem. For the case of a tree network, we develop a polynomial-time dynamic programming algorithm.  相似文献   

16.
在带惩罚的容错设施布局问题中, 给定顾客集合、地址集合、以及每个顾客和各个地址之间的连接费用, 这里假设连接费用是可度量的. 每位顾客有各自的服务需求, 每个地址可以开设任意多个设施, 顾客可以被安排连接到某些地址的一些开设的设施上以满足其需求, 也可以被拒绝, 但这时要支付拒绝该顾客所带来的惩罚费用. 目标是确定哪些顾客的服务需求被拒绝并开设一些设施, 将未被拒绝的顾客连接到不同的开设设施上, 使得开设费用、连接费用和惩罚费用总和最小. 给出了带惩罚的容错设施布局问题的线性整数规划及其对偶规划, 进一步, 给出了基于其线性规划和对偶规划舍入的4-近似算法.  相似文献   

17.
We consider a joint facility location–allocation and inventory problem that incorporates multiple sources of warehouses. The problem is motivated by a real situation faced by a multinational applied chemistry company. In this problem, multiple products are produced in several plants. Warehouse can be replenished by several plants together because of capabilities and capacities of plants. Each customer in this problem has stochastic demand and certain amount of safety stock must be maintained in warehouses so as to achieve certain customer service level. The problem is to determine number and locations of warehouses, allocation of customers demand and inventory levels of warehouses. The objective is to minimize the expected total cost with the satisfaction of desired demand weighted average customer lead time and desired cycle service level. The problem is formulated as a mixed integer nonlinear programming model. Utilizing approximation and transformation techniques, we develop an iterative heuristic method for the problem. An experiment study shows that the proposed procedure performs well in comparison with a lower bound.  相似文献   

18.
Facility location-allocation problem aims at determining the locations of some facilities to serve a set of spatially distributed customers and the allocation of each customer to the facilities such that the total transportation cost is minimized. In real life, the facility location-allocation problem often comes with uncertainty for lack of the information about the customers’ demands. Within the framework of uncertainty theory, this paper proposes an uncertain facility location-allocation model by means of chance-constraints, in which the customers’ demands are assumed to be uncertain variables. An equivalent crisp model is obtained via the \(\alpha \) -optimistic criterion of the total transportation cost. Besides, a hybrid intelligent algorithm is designed to solve the uncertain facility location-allocation problem, and its viability and effectiveness are illustrated by a numerical example.  相似文献   

19.
Customers arriving according to a Markovian arrival process are served at a single server facility. Waiting customers generate priority at a constant rate γγ; such a customer waits in a waiting space of capacity 1 if this waiting space is not already occupied by a priority generated customer; else it leaves the system. A customer in service will be completely served before the priority generated customer is taken for service (non-preemptive service discipline). Only one priority generated customer can wait at a time and a customer generating into priority at that time will have to leave the system in search of emergency service elsewhere. The service times of ordinary and priority generated customers follow PH-distributions. The matrix analytic method is used to compute the steady state distribution. Performance measures such as the probability of n consecutive services of priority generated customers, the probability of the same for ordinary customers, and the mean waiting time of a tagged customer are found by approximating them by their corresponding values in a truncated system. All these results are supported numerically.  相似文献   

20.
Two types of customers arrive at a single server station and demand service. If a customer finds the server busy upon arrival (or retrial) he immediately departs and conducts a retrial after an exponential period of time and persists this way until he gets served. Both types of customers face linear costs for waiting and conducting retrials and wish to find optimal retrial rates which will minimize these costs. This problem is analysed as a two-person nonzero sum game. Both noncooperative strategies are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号