首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract—Rate constants, k q , for the reaction of cationic and neutral acridine orange and 10-methylacridine orange triplet states (3AOH +, 3AO, 3MAO+) with a series of electron donors have been measured. Two different protolytic forms of the semireduced dye radical are produced by acridine orange triplet quenching at various pHM values in methanolic solution.
It is found that k 4 decreases with increasing oxidation potential of the reducing agent for all triplet states in a manner which is expected for electron transfer reactions. The different reactivities of the cationic and neutral triplet forms can, therefore, be attributed to the difference in reduction potentials of these species. The difference in reduction potentials is related to the p K M values of triplet state, p K TM , and semireduced dye radical, p K MS , by thermodynamic consideration. p K TM (3AOH+/3AO) is determined to be 11.2. From thisp K SM (AOH./AO;) is estimated to be 17–18. This is in striking contrast to the protolytic equilibrium of the semireduced dye radicals found to be pKF= 4.1. We conclude that the last value represents the second protonation equilibrium (AOH+2./AOH). This conclusion is confirmed by spectroscopic data.  相似文献   

2.
Abstract— –Problems associated with the protolytic equilibria of thionine and related molecules in their lowest excited electronic states were investigated. The theoretical arguments are based on semi-empirical SCF MO (CI) calculations for the π-electronic system of these molecules; all singly excited configurations were included in the CI. The results indicate that the basic form of thionine in its ground, first excited singlet and lowest triplet state is protonated at the heterocyclic N atom. The difference of the p K values of these three states can be explained in terms of the calculated charge densities. The photochemical reactivity of the lowest triplet of the acidic form of thionine (3TH22+) differs greatly from that of the lowest triplet of the basic form (3TH+). Some arguments for the assignment of nπ* character to 3TH22+ and ππ* character to 3TH+ are advanced.  相似文献   

3.
Abstract— The reactivity of flavin mononucleotide and of lumiflavin triplets was studied by flash and laser photolysis. The rate constants of the triplets with oxygen, with flavin ground-state molecules, and with Br- ions were determined. Although in solution at room temperature, the protonated flavin triplet, 3F1H+, is not formed directly from its very short lived singlet state, a transient, which we think is this triplet, results from protonation of the neutral triplet. This conclusion is based on a comparison between the neutral and the protonated triplet spectra in a low-temperature glass. It is proposed that the protonated triplet can also be formed by sensitization via the phenanthrene triplet.  相似文献   

4.
Abstract— Flash photolysis at 450 nm has been used to study the quenching of the excited triplet state of lumiflavin and the transient species formed in subsequent reactions in deaerated phosphate buffer (pH 6.9).
The effect of the presence of ferricyanide on the life time of triplet lumiflavin has been studied. The results suggest an energy transfer reaction without concurrent electron transfer reactions. The rate constant for the process was 2.8 times 109 M -1 s-1. The analogous reaction with ferrocyanide could not be observed because of the efficient electron transfer reaction (δG = -20.6 kcal mol-1) leading to the formation of the semireduced lumiflavin and ferricyanide. The rate constant for this reaction was 3.3 times 109 M -1 s-1. The semireduced lumiflavin radical was found to disappear in a second order reaction with a rate constant of 1.7 times 109 M -1 s-1. It was found to react with ferricyanide with a rate constant of 0.7 times 109 M -1 s-1.
A model for the various photochemical and photophysical processes involved in the decay and quenching of the lumiflavin triplet state is suggested and discussed.  相似文献   

5.
Abstract— Quantum yields for the lumiflavin-sensitized oxidation of guanosine monophosphate and adenosine monophosphate in solution have been measured as functions of oxygen and nucleotide concentration. The quantum yield increases with oxygen concentration at low oxygen concentrations, but quenching of the excited flavin molecule by oxygen results in a fall in quantum yield at higher concentrations. It has also been established that the reciprocal of the quantum yield is linearly related to the reciprocal of the nucleotide concentration. A mechanism in which molecular oxygen reacts with an excited complex formed between triplet lumiflavin and the nucleotide is consistent with these observations.
A value for the second-order rate constant for the quenching of triplet lumifiavin by oxygen of 2·65 × 109 M -1 sec-1 has been obtained.  相似文献   

6.
In this work, the electronic structure and spectroscopic properties of lumiflavin are calculated using various quantum chemical methods. The excitation energies for ten singlet and triplet states as well as the analysis of the electron density difference are assessed using various wave function‐based methods and density functionals. The relative order of singlet and triplet excited states is established on the basis of the coupled cluster method CC2. We find that at least seven singlet excited states are required to assign all peaks in the UV/Vis spectrum. In addition, we have studied the solvatochromic effect on the excitation energies and found differential effects except for the first bright excited state. Vibrational frequencies as well as IR, Raman and resonance Raman intensities are simulated and compared to their experimental counterparts. We have assigned peaks, assessed the effect of anharmonicity, and confirmed the previous assignments in case of the most intense transitions. Finally, we have studied the NMR shieldings and established the effect of the solvent polarity. The present study provides data for lumiflavin in the gas phase and in implicit solvent model that can be used as a reference for the protein‐embedded flavin simulations and assignment of experimental spectra.  相似文献   

7.
Abstract—
The reactions of the excited states of safranine T with aliphatic amines have been studied in methanol and acetonitrile. Quenching of the singlet and triplet states occurs by different mechanisms. Whereas the former excited state is quenched by a charge-transfer mechanism, the triplet state is quenched through proton transfer from the excited dye to the amine. This process leads to the unprotonated form of the dye in the triplet state, which is later quenched by amines to form the corresponding semireduced species. The monoprotonated triplet also undergoes self-quenching in both solvents (k = 1.2 × 108 M -1 s-1).  相似文献   

8.
Abstract— –A study has been made of the effects of a series of nucleotides upon the electronic excited states of lumiflavin in order to determine the mechanism of their flavin-sensitized oxidation. A hydrogen-abstraction mechanism is ruled out, because if the nucleotide acts as a reducing agent for the excited dye molecules, it should increase the rate of reduction of the dye when the irradiation is carried out in the absence of oxygen. However, each of the nucleotides studied was found to reduce the rate of anaerobic photoreduction. While oxidation by an intermediate species such as the dye 'moloxide' or singlet oxygen is not entirely ruled out, our evidence suggests that the initial reaction is between the nucleotide and the flavin triplet. This results in a loss of the triplet excitation energy and is a very efficient reaction, guanosine monophosphate shewing 36 per cent of the triplet quenching efficiency of potassium iodide. The relative rates of reaction of the nucleotides with the flavin triplet exactly parallels their quantum yields of sensitized photo-oxidation. The formation of ground-state complexes between flavin and nucleotide and the participation of the singlet excited state of the flavin are not considered to be important.  相似文献   

9.
Photosensitized splitting of cis-syn- and trans-syn-l,3-dimethyluracil dimers by 2′,3′,4′,5′-tetraacetylri-boflavin in acetonitrile containing a trace of perchloric acid was studied by laser flash photolysis. Protonation of the flavin prior to excitation resulted in excited singlet and triplet states that abstracted an electron from the dimers and yielded the protonated flavin radical (F1H2+), which was detected by absorption spectroscopy. Electron abstraction by the excited singlet state predominated over abstraction by the triplet state. Approximately one-third to one-half of the excited states quenched by the trans-syn dimer yielded F1H2+, the balance presumably undergoing back electron transfer within the geminate radical ion pair generated by the initial electron transfer. A covalently linked dimer-flavin exhibited very inefficient flavin radical ion formation, consistent with the known low efficiency of dimer splitting in this system. These results constitute the first identification of a flavin radical ion intermediate in photosensitized pyrimidine dimer splitting.  相似文献   

10.
Abstract. Pulsed laser photolysis at 347nm has been used to study the transient spectroscopy of alloxazine, lumichrome, lumiflavin, and riboflavin in acidic (pH 2.2) aqueous solution and in ethanol. Intersystem crossing quantum yields (φISC) were determined by a modification of the comparative laser excitation method which utilizes the variation of the triplet yield with intensity in conjunction with a kinetic model for the various photophysical and photochemical processes occurring during the pulse. Fluorescence quantum yields and lifetimes are also reported. Correction for quenching of the excited singlet state by H+ ions shows that, in neutral aqueous solution, intersystem crossing for flavins is an efficient process (φISC˜ 0.7) which, in conjunction with fluorescence, accounts for the fate of all absorbed photons. For alloxazine (φISC˜ 0.45) and lumichrome (φISC˜ 0.7) the results are more difficult to interpret owing to interconversion between alloxazine and isoalloxazine structures in the singlet excited state. For all four compounds, the quantum yield of products derived from the singlet excited state is estimated as ˜0.04. There is evidence of biphotonic product formation at high laser energies. In ethanol, where φISC for lumichrome is about twice that of lumiflavin, internal conversion between the excited singlet and ground states appears to be a significant process. Complete triplet-triplet absorption spectra in the region 260–750nm are reported. For lumichrome at pH 2.2 there is spectral evidence for isomeric triplet states which appear to be in equilibrium.  相似文献   

11.
Abstract— The pH dependence of the apparent reactivity of thiazine dyes in their triplet states has been studied in aqueous solutions, using as electron donor HY-3, the trianionic species of ethylene diamine tetraacetic acid (EDTA), in the pH range 4–8. The pH dependence is found to be related to a change in the degree of protonation of the triplet excited dye. The apparent reactivity and lifetime of two differently protonated forms of thionine, azur B and methylene blue were determined by classical and dye-laser flash techniques, making it possible to evaluate the rate constant for electron abstraction of these molecules in their triplet states. It is found that: (a) protonation on the ring nitrogen increases the electron-abstraction rate constant of the triplet-state species about twenty-fold, and (b) methylation on the side amino groups decreases it.  相似文献   

12.
As a model for riboflavin, lumiflavin was investigated using density functional theory methods (B3LYP/6-31G* and B3LYP/6-31+G**) with regard to the proposed cascade of intermediates formed after excitation to the triplet state, followed by electron-transfer, proton-transfer, and radical[bond]radical coupling reactions. The excited triplet state of the flavin is predicted to be 42 kcal/mol higher in energy than the singlet ground state, and the pi radical anion lies 45.1 kcal/mol lower in energy than the ground-state flavin and a free electron in the gas phase. The former value compares to a solution-phase triplet energy of 49.8 kcal/mol of riboflavin. For the radical anion, the thermodynamically favored position to accept a proton on the flavin ring system is at N(5). A natural population analysis also provided spin density information for the radicals and insight into the origin of the relative stabilities of the six different calculated hydroflavin radicals. The resulting 5H-LF* radical can then undergo radical[bond]radical coupling reactions, with the most thermodynamically stable adduct being formed at C(4'). Vibrational spectra were also calculated for the transient species. Experimental time-resolved infrared spectroscopic data obtained using riboflavin tetraacetate are in excellent agreement with the calculated spectra for the triplet flavin, the radical anion, and the most stable hydroflavin radical.  相似文献   

13.
Evidence for the existence of a reactive triplet excited state of lumiflavin has been obtained by the flash-photolysis technique. The triplet state is formed in high yield on the irradiation of flavin solutions in water or chloroform by visible light, and it has been demonstrated that it can transfer its energy to a second molecular species. The flavin-sensitised oxidation of two purine nucleotides, adenylic and guanylic acids, has been studied by flash-photolysis and by long-term irradiation, and the results suggest a triplet-triplet mechanism for the transfer of energy from the excited flavin to the nucleotide. Approximate absorption spectra of the triplet state and of a semiquinone of the flavin have been calculated from the complex transient absorption curves observed on flashing the flavin solution. The triplet decays by a first-order process where k1= 1·1 × 10-3. The chemiluminescence spectrum of skatole is identical with the fluorescence spectrum of o-formamidoacetophenone in the same environment Similar results for 2,3-dimethylindole lead to the identification of the acylamide anion as the emitter in indole chemiluminescence. A peroxide ring cleavage excitation mechanism is proposed. 104 sec-1 and the semiquinone by a second-order process where k2= 0·75 × 109 1.m-1 sec-1. The rate constants and extinction coefficients obtained enable decay curves to be calculated which fit satisfactorily those measured with the kinetic-flash apparatus.  相似文献   

14.
The decomposition of 1,2‐dioxetanone into a CO2 molecule and into an excited state formaldehyde molecule was studied in condensed phase, using a density functional theory approach. Singlet and triplet ground and excited states were all included in the calculations. The calculations revealed a novel mechanism for the chemiluminescence of this compound. The triplet excitation can be explained by two intersystem crossings (ISCs) with the ground state, while the singlet excitation can be accounted by an ISC with the triplet state. The experimentally verified small excitation yield can then be explained by the presence of an energy barrier present in the potential energy surface of the triplet excited state, which will govern both triplet and singlet excitation. It was also found that the triplet ground state interacts with both the triplet excited and singlet ground states. A MPWB1K/mPWKCIS approach provided results in agreement with the existent literature. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The energetics, structures, stabilities and reactivities of[CnH2]2+ ions have been investigated using computational methods and experimental mass spectrometric techniques. Spontaneous decompositions of [CnH2]2+ into [CnH]+ + H+ products, observed for ions with odd-n values, have been explained by invoking the formation of excited triplet states. Even-n [CnH]+ ions possess triplet ground states with low-lying excited states, whereas odd-n ions have triplet states with energies several eV above ground singlet states. Radiationless transitions of vibrationally excited long-lived triplet state ions into singlet state continua are suggested as possible mechanisms for spontaneous deprotonation processes of odd-n [CnH2]2+ ions. Evidence for these long-lived excited states has been obtained in bimolecular single electron transfer reactions.  相似文献   

16.
Abstract— –Flash photolysis at 450 nm over the temperature range 0.8–60°C was used to determine Arrhenius parameters for the first and second order disappearance of triplet lumiflavin (1.66 µ .M ) at a flash energy of 2 kj in deaerated phosphate buffer at varying pH:
3Lf → Lf0
3Lf +3Lf → Lf0+ Lf0
Arrhenius parameters were also determined for the pseudo first-order quenching of triplet lumiflavin by 10 µ M ferri- and ferrocyanide ions,
3Lf + Fe3+→ Fe3+→ Lf0+ Fe3+ (energy transfer)
3Lf + Fe2+→ Lf-+ Fe3+ (electron transfer)
and for disappearance of the semireduced lumiflavin in the presence of ferrocyanide at pH 6.8, by the second-order reaction
Lf-+Lf -→ Lf0+ Lf=.  相似文献   

17.
LUMIFLAVIN-SENSITIZED PHOTOOXYGENATION OF INDOLE   总被引:1,自引:0,他引:1  
Abstract— The lumiflavin-sensitized photooxygenation of indole in aqueous solutions has been investigated by means of steady light photolysis and flash photolysis. The semiquinone of lumiflavin and the half-oxidized radical of indole were formed by the reaction between triplet lumiflavin and indole (3.7 times 109 M -1 s-1). The semiquinone anion radical of lumiflavin reacted with oxygen to form superoxide radical. The triplet state of lumiflavin also reacted with oxygen forming singlet oxygen, 1O2. But the reaction between 1O2 and indole (7 times 107 M_l s_1; estimated from steady light photolysis using Rose Bengal as a sensitizer) was far less efficient than the reaction between indole and triplet lumiflavin. The quantum yield of the lumiflavin-sensitized photooxygenation of dilute indole via radical processes was much higher than that via 1O2 processes, though appreciable 1O2 was formed.  相似文献   

18.
We have investigated the photosensitized monomerization of the cis,syn -cyclobutane dimer of 1,3-di-methylthymine using riboflavin tetraacetate and a 5-deazaflavin derivative as photosensitizer. Although little monomerization of the dimer is induced by photoexcitation of the flavins in the absence of any additives, the flavins can function as an efficient photosensitizer in the presence of magnesium perchlorate. Mechanistic studies involving spectroscopic, quantum-yield and flash-photolysis measurements demonstrated that the photosensitized monomerization exclusively proceeds through electron transfer from the dimer to the triplet flavins complexed with Mg2+. The effects of magnesium perchlorate are compared with those on the chloranil-photosensitized monomerization and also with the effects of HClO4 on the flavin-photosensitized reaction.  相似文献   

19.
Abstract— We report the formation of an electrostatic complex between (16-pyrimidinium crown-4)tetranitrate (16PC4) and tetrakis-(4-sulfonatophenyl)porphyrin (4SP) in aqueous solution. Ground-state complex formation results in a red shift of the 4SP visible absorption bands and a decrease in absorbance of the Soret band. The equilibrium constant for complex formation (determined from optical titrations) is found to be (2.0 ± 0.2) × 105 M −1. In addition, the data fit to an expression describing a 1:1 stoichiometry. Excitation of the complex results in quenching of both the excited singlet and triplet states of the associated porphyrin. The singlet-state lifetime decreases from 10 ns for the free porphyrin to 1.5 ns in the presence of 16PC4 at low solution ionic strengths. In addition, evidence is presented for triplet-state quenching within the complex with k q= (1.1 ± 0.1) × 104 s−1. The mechanism of quenching is tentatively assigned to electron transfer from either the excited singlet or excited triplet state of the porphyrin to the ground state of the 16PC4.  相似文献   

20.
Abstract— The triplet states of biliverdin and biliverdin dimethyl ester have been generated using pulse radiolysis excitation. Biliverdin triplet was formed by energy transfer from biphenyl triplet in acetone, absorbed throughout the wavelength range studied (380–1000 nm) and had a half-life of 11.7μs under the cpnditions chosen. Biliverdin dimethyl ester triplet was formed by energy transfer from biphenyl triplet in benzene, likewise absorbed throughout the wavelength range studied (360–1000 nm) and had a half-life of 6.7μs under the conditions used. Both biliverdin and biliverdin dimethyl ester efficiently quench anthracene, naphthacene, but not μ-carotene, triplet states. On the other hand. neither μ-carotene nor oxygen were found to quench the triplet states of biliverdin or biliverdin dimethyl ester. Estimates or limits for the rate constants of all these quenching reactions were obtained. These reactivities suggest that the triplet levels of both biliverdin and biliverdin dimethyl ester lie around 90 kJ mol-1. The triplet energy transfer rate from bilirubin to biliverdin dimethyl ester in benzene was measured to be 1.9 × 109 M-1 s-1. The singlet-triplet intersystem crossing efficiencies of both molecules were very low, limits of 0.004 and 0.001 being found for biliverdin and biliverdin dimethyl ester, respectively, using 347 nm laser excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号