首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have continued the study of halide nucleophilicity in ionic liquids, concentrating on the effect of changing the anion ([BF(4)](-), [PF(6)](-), [SbF(6)](-), [OTf](-), and [N(Tf)(2)](-)) when the cation is [bmim](+) (where bmim = 1-butyl-3-methylimidazolium). It was found that the nucleophilicities of all the halides were lower in all of the ionic liquids than in dichloromethane. Changing the anion affected the order of halide nucleophilicity, e.g., in [bmim][BF(4)] the order of nucleophilicity was Cl(-)>Br(-)>I(-) while in [bmim][N(Tf)(2)] the order was Cl(-)相似文献   

2.
The interaction of ionic liquid with water in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/Triton X-100 (TX-100)/H2O ternary microemulsions, i.e., "[bmim][PF6]-in-water" microregions of the microemulsions, has been studied by the dynamics of solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 151 (C-151). The variation of the time constants of solvent relaxation of C-153 is very small with an increase in the [bmim][PF6]/TX-100 ratio (R). The rotational relaxation time of C-153 also remains unchanged in all micremulsions of different R values. The invariance of solvation and rotational relaxation times of C-153 indicates that the position of C-153 remains unaltered with an increase in R and probably the probe is located at the interfacial region of [bmim][PF6] and TX-100 in the microemulsions. On the other hand, in the case of C-151, with an increase in R the fast component of the solvation time gradually increases and the slow component gradually decreases, although the change in solvation time is small in comparison to that of microemulsions containing common polar solvents such as water, methanol, acetonitrile, etc. The rotational relaxation time of C-151 increases with an increase in R. This indicates that with an increase in the [bmim][PF6] content the number of C-151 molecules in the core of the microemulsions gradually increases. In general, the solvent relaxation time is retarded in this room temperature ionic liquid/water-containing microemulsion compared to that of a neat solvent, although retardation is very small compared to that of the solvent relaxation time of the conventional solvent in the core of the microemulsions.  相似文献   

3.
The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400 ps and 1.10 ns.  相似文献   

4.
This work addresses the experimental measurements of the surface tension of eight imidazolium based ionic liquids (ILs) and their dependence with the temperature (288-353 K) and water content. The set of selected ionic liquids was chosen to provide a comprehensive study of the influence of the cation alkyl chain length, the number of cation substitutions and the anion on the properties under study. The influence of water content in the surface tension was studied for several ILs as a function of the temperature as well as a function of water mole fraction, for the most hydrophobic IL investigated, [omim][PF(6)], and one of the more hygroscopic IL, [bmim][PF(6)]. The surface thermodynamic functions such as surface entropy and enthalpy were derived from the temperature dependence of the surface tension values.  相似文献   

5.
The steady-state fluorescence spectra and molecular dynamics simulations were explored to investigate the temperature dependent organization in some imidazolium ionic liquids:1-butyl-3-methylimidazolium hexafluo-rophosphate([bmim][PF6]),1-ethyl-3-methylimidazolium ethylsulfate([emim][EtSO4]) and 1-butyl-3-methylimida-zolium tetrafluoroborate([bmim][BF4]).The pure room temperature ionic liquids(ILs) exhibit a large red shift at more than an excitation wavelength of around 340 nm,which demonstrates the hetero...  相似文献   

6.
The kinetic constants and activation parameters for the reactions of Br(3)(-) and ICl(2)(-) with some alkenes and alkynes have been determined in the ionic liquids [bmim][PF(6)], [emim][Tf(2)N], [bmim][Tf(2)N], [hmim][TF(2)N], [bm(2)im][Tf(2)N], and [bpy][TF(2)N] (where emim = 1-ethyl-3-methylimidazolium, bmim = 1-butyl-3-methylimidazolium, hmim = 1-hexyl-3-methylimidazolium, bm(2)im = 1-butyl-2,3-dimethylimidazolium, bpy = butylpyridinium, PF(6) = hexafluorophosphate, and Tf(2)N = bis(trifluoromethylsulfonyl)imide) and in 1,2-dichloroethane. The rates of both reactions increase on going from 1,2-dichloroethane to ILs. Evidence suggests that, while the hydrogen bonding ability of the imidazolium cation is probably the main factor able to increase the rate of the addition of ICl(2)(-) to double and triple bonds, this property has no effect on the electrophilic addition of Br(3)(-) to alkenes and alkynes. Furthermore, in the case of the ICl(2)(-) reaction, the hydrogen bonding ability of ILs can be exploited to suppress the unwanted nucleophilic substitution reaction on the products by the Cl(-) anion.  相似文献   

7.
The group contribution equation of state (GC-EOS) was applied to predict the phase behavior of binary systems of ionic liquids of the homologous families 1-alkyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate with CO2. Pure group parameters for the new ionic liquid functional groups [-mim][PF6] and [-mim][BF4] and interaction parameters between these groups and the paraffin (CH3, CH2) and CO2 groups were estimated. The GC-EOS extended with the new parameters was applied to predict high-pressure phase equilibria in binary mixtures of the ionic liquids [emim][PF6], [bmim][PF6], [hmim][PF6], [bmim][BF4], [hmim][BF4], and [omim][BF4] with CO2. The agreement between experimental and predicted bubble point data for the ionic liquids was excellent for pressures up to 20 MPa, and even for pressures up to about 100 MPa, the agreement was good. The results show the capability of the GC-EOS to describe phase equilibria of systems consisting of ionic liquids.  相似文献   

8.
The kinetics of the nucleophilic aromatic substitution of some 2-L-5-nitrothiophenes (para-like isomers) with three different amines (pyrrolidine, piperidine, and morpholine) were studied in three room-temperature ionic liquids ([bmim][BF4], [bmim][PF6], and [bm(2)im][BF4], where bmim = 1-butyl-3-methylimidazolium and bm(2)im = 1-butyl-2,3-dimethylimidazolium). To calculate thermodynamic parameters, a useful instrument to gain information concerning reagent-solvent interactions, the reaction was carried out over the temperature range 293-313 K. The reaction occurs faster in ionic liquids than in conventional solvents (methanol, benzene), a dependence of rate constants on amine concentration similar to that observed in methanol, suggesting a parallel behavior. The above reaction also was studied with 2-bromo-3-nitrothiophene, an ortho-like derivative able to give peculiar intramolecular interactions in the transition state, which are strongly affected by the reaction medium.  相似文献   

9.
Molecular dynamics simulations of the liquid/vacuum surfaces of the room temperature ionic liquids [bmim][PF(6)], [bmim][BF(4)] and [bmim][Cl] have been carried out at various temperatures. The surfaces are structured with a top monolayer containing oriented cations and anions. The butyl side chains tend to face the vacuum and the methyl side chains the liquid. However, as the butyl chains are not densely packed, both anions and rings are visible from the vacuum phase. The effects of temperature and the anion on the degree of cation orientation is small, but the potential drop from the vacuum to the interior of the liquid is greater for liquids with smaller anions. We compare the simulation results with a range of experimental observations and suggest that neutron reflection from samples with protiated butyl groups would be a sensitive probe of the structure.  相似文献   

10.
Low-frequency (5-200 cm(-1)) Raman spectra are reported for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim]PF(6), in glassy, supercooled liquid, and normal liquid phases (77-330 K). Raman spectra of [bmim]PF(6) agree with previous results obtained by optical Kerr effect spectroscopy and molecular dynamics simulation. Both the superposition model and the coupling model give reasonable fit to low-frequency Raman spectra of [bmim]PF(6). The configurational entropy of [bmim]PF(6) has been evaluated as a function of temperature using recently reported data of heat capacity. The calculated configurational entropy is inserted in the Adam-Gibbs theory for supercooled liquids, giving a good fit to non-Arrhenius behavior of viscosity and diffusive process, with the latter revealed by a recent neutron scattering investigation of [bmim]PF(6). There is a remarkable linear dependence between intensity of quasielastic Raman scattering and configurational entropy from 77 K up to the melting point of [bmim]PF(6). This correlation offers insight into the nature of dynamical processes probed by low-frequency Raman spectra of ionic liquids.  相似文献   

11.
We have found the new nucleophilic fluorination reaction of some halo- and mesylalkanes to the corresponding fluoroalkanes with KF in the presence of [bmim][BF4] under various reaction conditions. 2-(3-Methanesulfonyloxypropoxy)naphthalene (1) was used as a model compound to optimize this fluorination reaction. Whereas the fluorination of the mesylate 1 with KF in an organic solvent such as CH3CN at 100 degrees C occurred hardly even after 24 h, the same reaction in ionic liquids, [bmim][BF4], as a reaction solvent was completed within 1.5 h, affording the wanted product 2-(3-fluoropropoxy)naphthalene 2a (85%) together with the alkene byproduct 2c (10%). Very interestingly, however, the addition of water (5 equiv) completely eliminated the formation of the undesired alkene 2c and thus gave higher yield of 2a (92%, entry 2). The use of acetonitrile as a cosolvent did not affect the reactivity of the fluorination. The presence of a proper amount of cosolvent was rather desirable (94% yield of 2a). We performed fluorination reactions with other ionic liquids ([bmim][PF6], [bmim][SbF6], [bmim][OTf], and [bmim][N(Tf)2], and two other cosolvents, to find the optimal ionic liquid and cosolvent. Nine different compounds were examined, including the 10 g-synthesis of 2-(fluoromethyl)naphthalene in 93% of isolated yield.  相似文献   

12.
室温离子液体由于其极低的蒸汽压、比较好的热稳定性和化学稳定性、良好的分子结构与性能的可设计性等优点,作为一种新型的环境友好溶剂在很多领域有着广泛的应用.对于离子液体的微观结构和微观性能的研究是设计新型离子液体以及扩展离子液体应用的关键.本文通过荧光探针分子香豆素153(C153)的转动动力学和对微观环境敏感的荧光探针分子1, 3-二(1-芘基)丙烷(BPP)的稳态荧光光谱,探测和表征了烷基取代的离子液体1-丁基-3-甲基咪唑六氟磷酸盐([bmim][PF6])和与其具有相似结构的醚键官能化的离子液体1-甲氧基乙基-3-甲基咪唑六氟磷酸盐([moemim][PF6])的微观结构和微粘度. C153探针分子在离子液体[bmim][PF6]中的转动过程具有快、慢两个组分表明离子液体[bmim][PF6]内部存在松散和紧密的两种结构微区;而C153探针分子在离子液体[moemim][PF6]中的转动动力学只存在一种过程,说明醚键的引入使得[moemim][PF6]内部趋于一种类型的微环境.通过C153探针分子的转动时间研究发现,醚键官能化的离子液体[moemim][PF6]的微粘度小于烷基链取代的离子液体[bmim][PF6],同时通过BPP探针分子的二聚体激基复合物(excimer)与单体(monomer)荧光发射强度的比值(IE/IM)研究也证明这一结果.醚键的引入使得离子液体[moemim][PF6]相对于离子液体[bmim][PF6],侧链的极性更大、柔顺性更好,同时醚键有可能作为氢键的受体与阳离子形成氢键从而削弱离子液体中阴、阳离子间的相互作用,使得离子液体[moemim][PF6]的微观环境比离子液体[bmim][PF6]更为均一,同时具有更小的微粘度.  相似文献   

13.
The amino induced elimination of benzisoxazole into the relevant o-cyanophenolate ion (Kemp elimination) has been studied in [bmim][BF 4] solution at 298 K. To have information about the interactions between reactants and ionic liquid, the reaction has been carried out at different temperatures (293-313 K). Several primary, secondary, and tertiary amines have been used to study the effect of amine structure on the reaction rate. The collected data show that the amine structure seems to have a crucial role in determining the reaction rate. Furthermore, as different cation or anion structures of an ionic liquid can significantly affect its properties, the title reaction has been performed in four different ionic liquids ([bmim][PF6], [bmim][NTf 2], [bm 2im][NTf 2], and [bmpyrr][NTf 2]), using pyrrolidine and piperidine as model amines. An H-donor negative solvent (MeOH and [bmim][NTf 2]) effect on reaction rate was detected. Finally, a narrow range of activation parameters was calculated both for the reaction induced by different amines and for pyrrolidine and piperidine, in the presence of different ILs. This fact suggests the occurrence of an "early" transition state.  相似文献   

14.
Ab initio molecular dynamics (AIMD) studies have been carried out on liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and its mixture with CO2 using the Car-Parrinello molecular dynamics (CPMD) method. Results from AIMD and empirical potential molecular dynamics (MD) have been compared and were found to differ in some respects. With a strong resemblance to the crystal, the AIMD simulated neat liquid exhibits many cation-anion hydrogen bonds, a feature that is almost absent in the MD results. The anions were observed to be strongly polarized in the condensed phase. The addition of CO2 increased the probability of this hydrogen bond formation. CO2 molecules in the vicinity of the ions of [bmim][PF6] exhibit larger deviations from linearity in their instantaneous configurations. The polar environment of the liquid induces a dipole moment in CO2, lifting the degeneracy of its bending mode. The calculated splitting in the vibrational mode compares well with infrared spectroscopic data. The solvation of CO2 in [bmim][PF6] is primarily facilitated by the anion, as seen from the radial and spatial distribution functions. CO2 molecules were found to be aligned tangential to the PF6 spheres with their most probable location being the octahedral voids of the anion. The structural data obtained from AIMD simulations can serve as a benchmark to refine interaction potentials for this important room-temperature ionic liquid.  相似文献   

15.
In an attempt to understand the nature of interactions between organic solutes and room temperature ionic liquids, temperature-dependent rotational relaxation of two structurally similar nondipolar solutes--2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP)--has been examined in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim+][PF6(-)]). Even with the ionic liquid, where the cation and the anion are strongly associated, the solute DPP experiences specific interactions, which is evident from its reorientation times that are 50%-60% longer in relation to DMDPP. It has been noticed that the reorientation times of both the solutes are faster in [bmim+][PF6(-)] than in glycerol, which is also a strongly associated solvent and whose viscosity is similar to the ionic liquid. This observation has been explained by taking into consideration the relative sizes of the solvents. By comparing the ratios of the reorientation times of DPP to DMDPP, in [bmim+][PF6(-)] and glycerol, it has been deduced that the strengths of the interaction between DPP-[bmim+][PF6(-)] and DPP-glycerol are the same.  相似文献   

16.
The rotational time correlation function (RTCF) of solute benzene molecules in the ionic liquid (1-butyl-3-methylimidazolium chloride) has been studied using classical molecular dynamics simulation. The effect of solvent charge on the functional form of RTCF was investigated by comparing four force fields for the solvent where the total charge on the anion and the cation was set to ±1e, ±0.7e, ±0.5e, and 0, respectively. For all three charged solvent models, the RTCF exhibits a long-time tail where the relaxation rate exhibits a significant slowdown. This feature is strengthened by higher solvent charges as well as lower temperatures, indicating the influence of the strong Coulombic fields arising from the solvent charges. The long-time tail is caused by the extraordinarily slow solvent structural relaxation of ionic liquids compared to the time scale of their local vibrational and librational dynamics.  相似文献   

17.
Chaumont A  Wipff G 《Inorganic chemistry》2004,43(19):5891-5901
We report a molecular dynamics study of the solvation of the UO2(2+) and Eu3+ cations and their chloro complexes in the [BMI][PF6][H2O] "humid" room-temperature ionic liquid (IL) composed of 1-butyl-3-methylimidazolium+ and PF6- ions and H2O in a 1:1:1 ratio. When compared to the results obtained in dry [BMI][PF6], the present results reveal the importance of water. The "naked" cations form UO2(H2O)5(2+) and Eu(H2O)9(3+) complexes, embedded in a shell of 7 and 8 PF6- anions, respectively. All studied UO2Cln(2-n) and EuCln(3-n) chloro complexes remain stable during the dynamics and coordinate additional H2O molecules in their first shell. UO2Cl4(2-) and EuCl6(3-) are surrounded by an "unsaturated" water shell, followed by a shell of BMI+ cations. According to an energy component analysis, the UO2Cl4(2-) and EuCl6(3-) species, intrinsically unstable toward dissociation, are more stable than their less halogenated analogues in the IL solution, due to the solvation forces. The different chloro species also interact better with the humid than with the dry IL, which hints at the importance of solvent humidity to improve their solubility. Humidity markedly modifies the local ion environment, with major consequences as far as their spectroscopic properties are concerned. We finally compare the aqueous interface of [BMI][PF6] and [OMI][PF6] ionic liquids, demonstrating the importance of imidazolium substituents (N-butyl versus N-octyl) to the nature of the interface and miscibility with water.  相似文献   

18.
The H/D exchange reaction and the rotational dynamics of heavy water (D2O) are studied at 50 degrees C in the ionic liquid, 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), in the [D2O] range of 3-55 M. The initial H/D exchange rates are observed as 1.0 x 10(-7), 4.5 x 10(-6), 1.0 x 10(-5), 4.1 x 10(-5), 1.1 x 10(-4), and 3.7 x 10(-4) s(-1), respectively, at [D2O] of 2.8, 7.1, 8.1, 11, 15, and 25 M. The rate is very slow and less than 10(-5) s(-1) at [D2O] below approximately 7 M. It steeply increases to the order of 10(-4)s(-1) for 7 M < [D2O] < 10 M, and linearly increases with [D2O] in the more water-rich region. The intercept of the linear region at [D2O] = approximately 9 M is interpreted by considering that each chloride anion deactivates 1.6 equiv water molecules due to the strong solvation. Correspondingly, the rotational correlation time of D2O at [D2O] < 7 M is 1 order of magnitude larger than that in water-rich conditions.  相似文献   

19.
A series of imidazolium salts with the nitrile functional group attached to the alkyl side chain, viz. [CnCNmim][X] (where CnCNmim is the 1-alkylnitrile-3-methylimidazolium cation and Cn= (CH2)(n), n = 1-4; X = Cl, PF(6), and BF(4)) and [C3CNdmim][X] (where CnCNdmim is the 1-alkylnitrile-2,3-dimethylimidazolium cation and C(n) = (CH2)(n), n = 3; X = Cl, PF(6), and BF(4)), have been prepared and characterized using spectroscopic methods. The majority of the nitrile-functionalized imidazolium salts can be classed as ionic liquids since they melt below 100 degrees C. Four of the imidazolium salts have been characterized in the solid state using single-crystal X-ray diffraction analysis to reveal an extensive series of hydrogen bonds between H atoms on the cation and the anion. The relationship between the solid-state structure and the melting point is discussed. Key physical properties (density, viscosity, and solubility in common solvents) of the low melting ionic liquid have been determined and are compared with those of the related 1-alkyl-3-methylimidazolium and 1-alkyl-2,3-dimethylimidazolium ionic liquids. It was envisaged that these ionic liquids could act as both solvent and ligand for catalyzed reactions, and this application is demonstrated in hydrogenation reactions, which show that retention of the catalyst in the ionic liquid during product extraction is extremely high.  相似文献   

20.
The nucleophilic aromatic substitution of some activated aryl or heteroaryl halides has been performed in ionic liquid solution, using the 1-butyl-3-methylimidazolium azide as a nucleophile. The reaction course was studied varying the structures of both substrates and ionic liquids. In particular, in the latter case, the reaction of 2-bromo-5-nitrothiophene was carried out in five different ionic liquids ([bmim][BF 4], [bmim][PF 6], [bmim][NTf 2], [bm 2im][NTf 2], and [bmpyrr][NTf 2]). Finally, for all the substrates considered, a comparison with data obtained in MeOH solution in the presence of NaN 3 was also performed. Data collected indicate that in some cases it is possible to obtain aromatic or heteroaromatic azide derivatives in satisfactory yield by means of a S NAr reaction using [bmim][N 3] as the nucleophile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号