首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We consider the waiting time (delay) W in a FCFS c-server queue with arrivals which are either renewal or governed by Neuts' Markovian arrival process, and (possibly heterogeneous) service time distributions of general phase-type F i , with m i phases for the ith server. The distribution of W is then again phase-type, with m 1m c phases for the general heterogeneous renewal case and phases for the homogeneous case F i =F, m i =m. We derive the phase-type representation in a form which is explicit up to the solution of a matrix fixed point problem; the key new ingredient is a careful study of the not-all-busy period where some or all servers are idle. Numerical examples are presented as well.  相似文献   

2.
Abstract

In this article, we study BMAP/G/1 queue with service time distribution depending on number of processed items. This type of queue models the systems with the possibility of preliminary service. For the considered system, an efficient algorithm for calculating the stationary queue length distribution is proposed, and Laplace–Stieltjes transform of the sojourn time is derived. Little's law is proved. An optimization problem is considered.  相似文献   

3.
Qi-Ming He 《Queueing Systems》2005,49(3-4):363-403
In this paper, we study a discrete time queueing system with multiple types of customers and a first-come-first-served (FCFS) service discipline. Customers arrive according to a semi-Markov arrival process and the service times of individual customers have PH-distributions. A GI/M/1 type Markov chain for a generalized age process of batches of customers is introduced. The steady state distribution of the GI/M/1 type Markov chain is found explicitly and, consequently, the steady state distributions of the age of the batch in service, the total workload in the system, waiting times, and sojourn times of different batches and different types of customers are obtained. We show that the generalized age process and a generalized total workload process have the same steady state distribution. We prove that the waiting times and sojourn times have PH-distributions and find matrix representations of those PH-distributions. When the arrival process is a Markov arrival process with marked transitions, we construct a QBD process for the age process and the total workload process. The steady state distributions of the waiting times and the sojourn times, both at the batch level and the customer level, are obtained from the steady state distribution of the QBD process. A number of numerical examples are presented to gain insight into the waiting processes of different types of customers.AMS subject classification: 60K25, 60J10This revised version was published online in June 2005 with corrected coverdate  相似文献   

4.
We analyse a single‐server queue in which the server goes through alternating periods of vacation and work. In each work period, the server attends to the queue for no more than a fixed length of time, T. The system is a gated one in which the server, during any visit, does not attend to customers which were not in the system before its visit. As soon as all the customers within the gate have been served or the time limit has been reached (whichever occurs first) the server goes on a vacation. The server does not wait in the queue if the system is empty at its arrival for a visit. For this system the resulting Markov chain, of the queue length and some auxiliary variables, is level‐dependent. We use special techniques to carry out the steady state analysis of the system and show that when the information regarding the number of customers in the gate is not critical we are able to reduce this problem to a level‐independent Markov chain problem with large number of boundary states. For this modified system we use a hybrid method which combines matrix‐geometric method for the level‐independent part of the system with special solution method for the large complex boundary which is level‐dependent. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号