首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A MEMS-based sensing device is used to measure the normal and tangential stress fields at the base of a rough elastomer film in contact with a smooth glass cylinder in steady sliding. This geometry allows for a direct comparison between the stress profiles measured along the sliding direction and the predictions of an original exact bidimensional model of friction. The latter assumes Amontons’ friction law, which implies that in steady sliding the interfacial tangential stress is equal to the normal stress times a pressure-independent dynamic friction coefficient μd, but makes no further assumption on the normal stress field. Discrepancy between the measured and calculated profiles is less than 14% over the range of loads explored. Comparison with a test model, based on the classical assumption that the normal stress field is unchanged upon tangential loading, shows that the exact model better reproduces the experimental profiles at high loads. However, significant deviations remain that are not accounted for by either calculations. In that regard, the relevance of two other assumptions made in the calculations, namely (i) the smoothness of the interface and (ii) the pressure-independence of μd is briefly discussed.  相似文献   

2.
On the Control of the Friction Force   总被引:1,自引:1,他引:1  
This paper tackles the problem of controlling the Coulomb friction force in order to achieve damping characteristics which can be advantageous in engineering applications, particularly in the area of vibration control, for example, vehicle suspensions, rotating machinery foundations or earthquake protection systems. The control schemes employed belong to the family of variable structure controllers (VSC), a class of robust control algorithms, namely sliding mode control (SMC) and switched state feedback (SSF). The schemes perform force tracking control, aiming at making the friction force track a reference force in order to reduce the acceleration experienced by a suspended mass. The plant investigated is a 2-degree of freedom system and in this study represents a quarter car. The controller performances are investigated both numerically and experimentally.  相似文献   

3.
We propose and evaluate a linearized method to measure dynamic friction between micromachined surfaces. This linearized method reduces the number of data points needed to obtain dynamic friction data, minimizing the effect of wear on sliding surfaces during the measurement. We find that the coefficient of dynamic friction is lower than the coefficient of static friction, while the adhesive pressure is indistinguishable for the two measurements. Furthermore, after an initial detailed measurement is made on a device type, the number of trial runs required to take the data on subsequent devices can be reduced from 200 to approximately 20.  相似文献   

4.
Tribological properties for polymers are mainly experimentally determined, while few standards are available and variation in data is often large. Polyimide is slid against steel on a cylinder-on-plate tribotester at 50–200 N and 0.3 m/s. There is a statistical variation of ±7% on dynamic friction, ±10% on static friction, ±8% on wear rates from weight loss and ±12% from wear rates from dimensional measurements, or even higher at high normal loads. Different parameters influencing statistical repeatability are discussed. Friction for polymers shows higher variation and wear rates show lower variation than steel/steel pairs due to visco-elastic deformation that has a contribution to friction but reduces stress concentrations. It is experimentally verified that the visco-elastic deformation of polymers in line contact is higher than calculated from theoretical models. The role of recoverable and permanent deformation is verified and there is a difference in deformation at 50–100 N and 150–200 N revealed from static loading tests, creep tests and wear measurements. The limit between running-in and steady-state coincides with the stabilization in contact pressures after 250 μm diameter reduction. Besides test rig design, a variation in counterface roughness seems the second most important influence.  相似文献   

5.
In this paper, the onset of sliding between two elastic half-spaces in contact, subjected to a tangential force, is studied within the framework of critical phenomena. First, it is shown that the contact domain between two rough surfaces is a lacunar set and that the distribution of contact stresses is multifractal. By applying an increasing tangential force, under constant normal load, the so-called regime of partial-slip comes into play. However, the continuous and smooth transition to full sliding, predicted by the classical Cattaneo-Mindlin theory, is not confirmed by the experiments, which show marked frictional instabilities. A numerical multi-scale procedure is proposed, taking into account the redistribution of stress, consequent to partial-slip, among the contact areas at all scales. It is shown that the lacunarity of the contact domain delays the onset of instability, when compared to compact Euclidean domains. Independently of the assumptions made for the frictional behaviour at the scale of the asperities (Coulomb friction for meso-scale asperities, adhesion for micro-scales), renormalization permits the critical value of the tangential force which provides the instability to be found. Moreover, the multifractal analysis of the domains where the shear resistance is activated captures the size-scale effects on the friction coefficient, currently evidenced by the experiments.  相似文献   

6.
Under consideration is the problem of size and response of the representative volume element (RVE) of spatially random linear viscoelastic materials. The model microstructure adopted here is the random checkerboard with one phase elastic and another viscoelastic, perfectly bonded everywhere. The method relies on the hierarchies of mesoscale bounds of relaxation moduli and creep compliances (Huet, 1995, 1999) obtained via solutions of two stochastic initial boundary value problems, respectively, under uniform kinematic and uniform stress boundary conditions. In general, the microscale viscoelasticity introduces larger discrepancy in the hierarchy of mesoscale bounds compared to elasticity, and this discrepancy grows as the time increases.  相似文献   

7.
A linear semi-continuum model with discrete atomic layers in the thickness direction was developed to investigate the bending behaviors of ultra-thin beams with nanoscale thickness.The theoretical results show that the deflection of an ultra-thin beam may be enhanced or reduced due to different relaxation coefficients.If the relaxation coefficient is greater/less than one,the deflection of micro/nano-scale structures is enhanced/reduced in comparison with macro-scale structures.So,two opposite types of size-dependent behaviors are observed and they are mainly caused by the relaxation coefficients.Comparisons with the classical continuum model,exact nonlocal stress model and finite element model (FEM) verify the validity of the present semi-continuum model.In particular,an explanation is proposed in the debate whether the bending stiffness of a micro/nano-scale beam should be greater or weaker as compared with the macro-scale structures.The characteristics of bending stiffness are proved to be associated with the relaxation coefficients.  相似文献   

8.
An analytical method is proposed to accurately estimate the pull-in parameters of a micro- or nanocantilever beam elastically constrained by a rotational spring at one end. The system is actuated by electrostatic force and subject to Casimir or van der Waals forces according to the beam size. The deflection of the beam is described by a fourth-order nonlinear boundary value problem, or equivalently in terms of a nonlinear integral equation. New a priori analytical estimates on the solution from both sides are first derived and then lower and upper bounds for the pull-in parameters are obtained, with no need of solving the nonlinear boundary value problem. The lower and upper bounds turn out to be very close each other and in excellent agreement with the numerical results provided by the shooting method. The approach also provides accurate predictions for the pull-in parameters of a freestanding nanoactuator.  相似文献   

9.
Alexandrov  S.  Alexandrova  N. 《Meccanica》2000,35(5):393-398
For a rigid/plastic, hardening material model, it is shown that the velocity fields adjacent to surfaces of maximum friction must satisfy the sticking condition. This means that the stress boundary condition, the maximum friction law, may be replaced by the velocity boundary condition. Axisymmetric flows without rotation and planar flows are considered.  相似文献   

10.
MEMS/NEMS switches are used in a variety of portable electronics and RF telecommunications systems. MEMS/NEMS switches are ideally bi-stable, with one ON and one OFF state and a reliable switching between the two induced by electrical actuation. Presented herein is an exploration into non-ideal behavior, i.e. tri-stability, and parametric sensitivity of a generalization of cantilever MEMS/NEMS switches. The representative system model employs multiphysics features based on Euler–Bernoulli beam theory, parallel plate capacitance for electrostatics, and a Lennard-Jones form of surface interaction. The geometry, material properties, and surface features of the device are condensed into just a few dimensionless quantities, creating a parameter space of low enough dimensionality to provide accessible representations of all system equilibria within physically relevant ranges. Analysis of this system model offers insight regarding conditions necessary for bi- and tri-stability in such systems, which are crucial for informing studies on switching dynamics and various device performance metrics.  相似文献   

11.
Friction contacts are often used in turbomachinery design as passive damping systems. In particular, underplatform dampers are mechanical devices used to decrease the vibration amplitudes of bladed disks.Numerical codes are used to optimize during designing the underplatform damper effectiveness in order to limit the resonant stress level of the blades. In such codes, the contact model plays the most relevant role in calculation of the dissipated energy at friction interfaces. One of the most important contact parameters to consider in order to calculate the forced response of blades assembly is the static normal load acting at the contact, since its value strongly affects the area of the hysteresis loop of the tangential force, and therefore the amount of dissipation.A common procedure to estimate the static normal loads acting on underplatform dampers consists in decoupling the static and the dynamic balance of the damper. A preliminary static analysis of the contact is performed in order to get the static contact/gap status to use in the calculation, assuming that it does not change when vibration occurs.In this paper, a novel approach is proposed. The static and the dynamic displacements of the system (bladed disk+underplatform dampers) are coupled together during the forced response calculation. Static loads acting at the contacts follow from static displacements and no preliminary static analysis of the system is necessary.The proposed method is applied to a numerical test case representing a simplified bladed disk with underplatform dampers. Results are compared with those obtained with the classical approach.  相似文献   

12.
In this work, the sliding contact of viscoelastic layers of finite thickness on rigid sinusoidal substrates is investigated within the framework of Green's functions approach. The periodic Green's functions are determined by means of a novel formalism, which can be applied, in general, to either 2D and 3D viscoelastic periodic contacts, regardless of the contact geometry and boundary conditions.Specifically, two different configurations are considered here: a free layer with a uniform pressure applied on the top, and a layer rigidly confined on the upper boundary. It is shown that the thickness affects the contact behavior differently, depending on the boundary conditions. In particular, the confined layer exhibits increasing contact stiffness when the thickness is reduced, leading to higher loads for complete contact to occur. The free layer, instead, becomes more and more compliant as thickness is reduced.We find that, in partial contact, the layer thickness and the boundary conditions significantly affect the frictional behavior. In fact, at low contact penetrations, the confined layer shows higher friction coefficients compared to the free layer case; whereas, the scenario is reversed at large contact penetrations. Furthermore, for confined layers, the sliding speed related to the friction coefficient peak is shifted as the contact penetration increases. However, once full contact is established, the friction coefficient shows a unique behavior regardless of the layer thickness and boundary conditions.  相似文献   

13.
The paper deals with the estimation of the pressure distribution, the shape of contact and the friction force at the interface of a flat soft elastic solid moving on a rigid half-space with a slightly wavy surface. In this case an unsymmetrical contact is considered and justified with the adhesion hysteresis. For soft solids as rubber and polymers the friction originates mainly from two different contributions: the internal friction due to the viscoelastic properties of the bulk and the adhesive processes at the interface of the two solids. In the paper the authors focus on the latter contribution to friction. It is known, indeed, that for soft solids, as rubber, the adhesion hysteresis is, at least qualitatively, related to friction: the larger the adhesion hysteresis the larger the friction. Several mechanisms may govern the adhesion hysteresis, such as the interdigitation process between the polymer chains, the local small-scale viscoelasticity or the local elastic instabilities. In the paper the authors propose a model to link, from the continuum mechanics point of view, the friction to the adhesion hysteresis. A simple one-length scale roughness model is considered having a sinusoidal profile. For partial contact conditions the detached zone is taken to be a mode I propagating crack. Due to the adhesion hysteresis, the crack is affected by two different values of the strain energy release rate at the advancing and receding edges respectively. As a result, an unsymmetrical contact and a friction force arise. Additionally, the stability of the equilibrium configurations is discussed and the adherence force for jumping out of contact and the critical load for snapping into full contact are estimated.  相似文献   

14.
The oblique impact between a golf ball and a polymethyl methacrylate (PMMA) target with smooth transparent surfaces was studied using a high-speed video camera. Video images of the impact were recorded from the backside of the target and were used to determine the contact time, contact area, and the displacement and rotation of the ball along the target. The average tangential and angular velocities were determined as functions of the inbound ball velocity. As the inbound ball velocity increased, the contact area and average tangential and angular velocities also increased while the contact time decreased. An oiled PMMA target was used to study the effect of reduced friction between the ball and target. The results were compared with earlier data for a steel target with relatively rough surfaces. The contact area and time were unaffected by friction, but the average tangential velocity increased while the average angular velocity decreased as the friction decreased.  相似文献   

15.
The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.  相似文献   

16.
The characteristics of a gaseous flow of nitrogen in commercial stainless steel microtubes for gas chromatography having a nominal inner diameter of 762, 508, 254 and 127 μm are experimentally investigated. The friction factor is calculated as a function of the Reynolds number and plotted in a Moody chart. A comparison among three different methods to calculate the friction factor is made in order to evidence limitations and advantages of each method. It was observed that in the laminar regime the Poiseuille law correctly predicts the value of the pressure drop. It has been evidenced that in order to make accurate experiments on the frictional characteristics of commercial microtubes the value of the inner diameter given by the manufacturer has to be always verified. The experimental data presented in this work remark how in microtubes the compressibility effects related to the axial variation of the gas density tend to become important at large Reynolds numbers and small diameters even if the average Mach number is low. The effects due to the gas acceleration on the laminar-to-turbulent transition in microtubes are investigated by evidencing the role of the L/D (length to diameter) ratio on the transition to turbulence. No early transition to turbulence has been evidenced in the tests, instead it takes place at Reynolds numbers ranging between 1800 and 2900.  相似文献   

17.
In a metal forming process, plastic deformation of the workpiece takes place at tool and workpiece interface region. Tool has been identified as one of the key parameters in controlling the productivity of any manufacturing industry. The deformation of metals and friction at the contact region produce large amount of heat, a part of that heat is conducted towards the tool where it is removed by forced convection. These cooling and heating cycles finally result in a substantial change in the temperature distribution in the roll. In this paper, an attempt is made to study the temperature and heat flux distribution in the roll by considering a non-uniform heat flux at the roll-workpiece interface for a cold rolling process. Adopting an elemental approach, a methodology has been proposed to model non-uniform heat flux at the interface. For this purpose both tool and workpiece has been considered together, thus a coupled approach is used to model both deformation and heat transfer phenomenon. It is demonstrated that the present approach of modeling is more general than that available in the literature. For example, a constant value of heat flux at the interface that is considered by several investigators is shown to be a special case of the present investigation, particularly when the deformation and relative velocity is very small. It is shown that the error in maximum temperature associated with constant heat flux assumption could be more than 5% in situations when reduction and relative velocity is high. The results are presented for temperature and heat flux distributions in the roll for different operating conditions.a thermal diffusivity, (m2/sec) - B pre-strain coefficient - C yield stress at unit strain, (N/m2) - e rate of deformation heat generation per unit volume, (W/m3) - f friction factor - h heat transfer coefficient, (W/m2 °C) - k thermal conductivity, (W/m °C) - K yield stress at unit strain, (N/m2) - L bite length, (m) - n strain hardening exponent - P pressure between tool and workpiece, (N/m2) - q heat flux, (W/m2) - qf friction heat flux, (W/m2) - heat flux entering towards the roll for any arbitrary element j (W/m2) - R roll radius, (m) - So yield stress in plane strain, (N/m2) - T temperature difference (T = TrTo), (°C) - T surrounding temperature, (°C) - y strip thickness, (m) - Vrel relative slipping velocity, (m/sec) - V velocity, (m/sec) - Pe Peclet number - Bi Biot number - T Total bite angle - mean effective strain - mean true stress, (N/m2) - mean strain rate - friction stress, (N/m2) - coefficient of friction - angle between heating and cooling regions - angle of cooling spray region - r, polar coordinates - x, y Cartesian coordinates - o initial value - f final value - r related to roll - s related to strip - a average value - j elemental region  相似文献   

18.
Computational contact homogenization approach is applied to study friction anisotropy resulting from asperity interaction in elastic contacts. Contact of rough surfaces with anisotropic roughness is considered with asperity contact at the micro scale being governed by the isotropic Coulomb friction model. Application of a micro-to-macro scale transition scheme yields a macroscopic friction model with orientation- and pressure-dependent macroscopic friction coefficient. The macroscopic slip rule is found to exhibit a weak non-associativity in the tangential plane, although the slip rule at the microscale is associated in the tangential plane. Counterintuitive effects are observed for compressible materials, in particular, for auxetic materials.  相似文献   

19.
单晶硅表面改性及其微观摩擦学性能研究进展   总被引:8,自引:2,他引:8  
评述了单晶硅表面改性及其微观摩擦磨损性能研究现状和进展,就单晶硅微观机械性能和摩擦磨损性能、单晶硅表面沉积薄膜和氧化层的微观机械和摩擦学性能及硅材料表面离子注入和表面纳米化等相关研究进行了归纳总结;指出应当继续深化硅材料表面改性技术及改性层微观摩擦学性能的研究,特别是应当加强硅材料表面离子注入及表面纳米化的研究,从而满足MEMs/NEMs等高技术领域的应用和发展需要.  相似文献   

20.
Materials composed of consolidated grains and/or containing internal contacts are widespread in everyday life (e.g. rocks, geomaterials, concretes, slates, ceramics, composites, etc.). For any simulation of the elastic behavior of this class of solids, be it in seismology, in NDT, or in the modeling of building constructions, the stress-strain constitutive equations are indispensable. Since the most common loading patterns in nature considerably deviate from simple uniaxial compression, the problem of tensorial stress-strain representation arises. In simple loading cases it may be sufficient to use a phenomenological constitutive model. However, in a more general case, phenomenological approaches encounter serious difficulties due to the high number of unknown parameters and the complexity of the model itself. Simplification of the phenomenology can help only partly, since it may require artificial assumptions. For instance, is it enough just to link the volumetric stress to the volumetric strain, or do we have to include shear components as well, and if yes, in what form? We therefore propose a physical tensorial stress-strain model, based on the consideration of plane cracks with friction. To do this, we combine known relations for normal displacements of crack faces given by contact mechanics, the classical Amonton's law of dry friction for lateral displacements, and the equations of elasticity theory for a collection of non-interacting cracks with given orientation. The major advantages of this model consist in the full tensorial representation, the realistic stress-strain curves for uniaxial stress compression and quantitative comparison with experimental data, and a profound account for hysteretic memory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号