首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lie–Rinehart algebra of a (connected) manifold ${\mathcal {M}}$ , defined by the Lie structure of the vector fields, their action and their module structure over ${C^\infty({\mathcal {M}})}$ , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra ${\Lambda_{R}({\mathcal {M}})}$ , with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact ${{\mathcal {M}}}$ ) ${Z}$ which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to Z  =  i z, z  =  0 and ${z = \hbar}$ , respectively; canonical quantization uniquely follows from such a general geometrical structure. For ${z =\hbar \neq 0}$ , the regular factorial Hilbert space representations of ${\Lambda_{R}({\mathcal{M}})}$ describe quantum mechanics on ${{\mathcal {M}}}$ . For z  =  0, if Diff( ${{\mathcal {M}}}$ ) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on ${{\mathcal {M}}}$ .  相似文献   

2.
3.
Using the methodology of Lie groups and Lie algebras we determine new symmetry and equivalence classes of the stationary three-dimensional Euler equations by introducing potential functions that are based on the so-called dual stream function representation of the steady state velocity field u(x, y, z) = ?λ(x, y, z) × ?μ(x, y, z), which itself can only be defined locally. In particular an infinite dimensional Lie algebra for Beltrami fields is gained. We show that this Lie algebra generates canonical transformations of a Hamiltonian flow for the dual pair of variables \(\lambda \) and \(\mu \) . It enables us to make the classification of a two-dimensional Riemannian manifold \(M^{2}\) wherein \((\lambda ,\mu )\) presents the local coordinates of \(M^{2}\) . Furthermore the local geometry of this manifold is explored in detail. As a result an infinite set of locally conserved currents and charges in the context of a conformal field theory is finally observed.  相似文献   

4.
This paper analyzes the action δ of a Lie algebra X by derivations on a C*–algebra ${\mathcal{A}}$ . This action satisfies an “almost inner” property which ensures affiliation of the generators of the derivations δ with ${\mathcal{A}}$ , and is expressed in terms of corresponding pseudo–resolvents. In particular, for an abelian Lie algebra X acting on a primitive C*–algebra ${\mathcal{A}}$ , it is shown that there is a central extension of X which determines algebraic relations of the underlying pseudo–resolvents. If the Lie action δ is ergodic, i.e. the only elements of ${\mathcal{A}}$ on which all the derivations in δ X vanish are multiples of the identity, then this extension is given by a (non–degenerate) symplectic form σ on X. Moreover, the algebra generated by the pseudo–resolvents coincides with the resolvent algebra based on the symplectic space (X, σ). Thus the resolvent algebra of the canonical commutation relations, which was recently introduced in physically motivated analyses of quantum systems, appears also naturally in the representation theory of Lie algebras of derivations acting on C*–algebras.  相似文献   

5.
We introduce a new type of algebra, the Courant–Dorfman algebra. These are to Courant algebroids what Lie–Rinehart algebras are to Lie algebroids, or Poisson algebras to Poisson manifolds. We work with arbitrary rings and modules, without any regularity, finiteness or non-degeneracy assumptions. To each Courant–Dorfman algebra ${(\mathcal{R}, \mathcal{E})}$ we associate a differential graded algebra ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ in a functorial way by means of explicit formulas. We describe two canonical filtrations on ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ , and derive an analogue of the Cartan relations for derivations of ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ ; we classify central extensions of ${\mathcal{E}}$ in terms of ${H^2(\mathcal{E}, \mathcal{R})}$ and study the canonical cocycle ${\Theta \in \mathcal{C}^3(\mathcal{E}, \mathcal{R})}$ whose class ${[\Theta]}$ obstructs re-scalings of the Courant–Dorfman structure. In the nondegenerate case, we also explicitly describe the Poisson bracket on ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ ; for Courant–Dorfman algebras associated to Courant algebroids over finite-dimensional smooth manifolds, we prove that the Poisson dg algebra ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ is isomorphic to the one constructed in Roytenberg (On the structure of graded symplectic supermanifolds and Courant algebroids. American Mathematical Society, Providence, 2002) using graded manifolds.  相似文献   

6.
Let G be a Lie group acting by diffeomorphisms on a manifold M and consider the image of T[1]G and T[1]M, of G and M respectively, in the category of differential graded manifolds. We show that the obstruction to lift the action of T[1]G on T[1]M to an action on a ${\mathbb{R}[n]}$ -bundle over T[1]M is measured by the G equivariant cohomology of M. We explicitly calculate the differential graded Lie algebra of the symmetries of the ${\mathbb{R}[n]}$ -bundle over T[1]M and we use this differential graded Lie algebra to understand which actions are hamiltonian. We show how split Exact Courant algebroids could be obtained as the derived Leibniz algebra of the symmetries of ${\mathbb{R}[2]}$ -bundles over T[1]M, and we use this construction to propose that the infinitesimal symmetries of a split Exact Courant algebroid should be encoded in the differential graded Lie algebra of symmetries of a ${\mathbb{R}[2]}$ -bundle over T[1]M. With this setup at hand, we propose a definition for an action of a Lie group on an Exact Courant algebroid and we propose conditions for the action to be hamiltonian.  相似文献   

7.
In this paper we study a quadratic Poisson algebra structure on the space of bilinear forms on ${\mathbb{C}^{N}}$ C N with the property that for any ${n, m \in \mathbb{N}}$ n , m ∈ N such that n mN, the restriction of the Poisson algebra to the space of bilinear forms with a block-upper-triangular matrix composed from blocks of size ${m \times m}$ m × m is Poisson. We classify all central elements and characterise the Lie algebroid structure compatible with the Poisson algebra. We integrate this algebroid obtaining the corresponding groupoid of morphisms of block-upper-triangular bilinear forms. The groupoid elements automatically preserve the Poisson algebra. We then obtain the braid group action on the Poisson algebra as elementary generators within the groupoid. We discuss the affinisation and quantisation of this Poisson algebra, showing that in the case m = 1 the quantum affine algebra is the twisted q-Yangian for ${\mathfrak{o}_{n}}$ o n and for m = 2 is the twisted q-Yangian for ${(\mathfrak{sp}_{2n})}$ ( sp 2 n ) . We describe the quantum braid group action in these two examples and conjecture the form of this action for any m > 2. Finally, we give an R-matrix interpretation of our results and discuss the relation with Poisson–Lie groups.  相似文献   

8.
We consider a complex simple Lie algebra ${\mathfrak{g}}$ , with the action of its adjoint group. Among the three canonical nilpotent orbits under this action, the minimal orbit is the non zero orbit of smallest dimension. We are interested in equivariant deformation quantization: we construct ${\mathfrak{g}}$ -invariant star-products on the minimal orbit and on its closure, a singular algebraic variety. We shall make use of Hochschild homology and cohomology, of some results about the invariants of the classical groups, and of some interesting representations of simple Lie algebras. To the minimal orbit is associated a unique, completely prime two-sided ideal of the universal enveloping algebra ${{\rm U}(\mathfrak{g})}$ . This ideal is primitive and is called the Joseph ideal. We give explicit expressions for the generators of the Joseph ideal and compute the infinitesimal characters.  相似文献   

9.
10.
Let be a commutative subspace lattice generated by finite many commuting independent nests on a complex separable Hilbert space with , and the associated CSL algebra. It is proved that every Lie triple derivation from into any σ-weakly closed algebra containing is of the form XXT?TX+h(X)I, where and h is a linear mapping from into ? such that h([[A,B],C])=0 for all .  相似文献   

11.
Assume ${\mathcal{A}}$ is a Fréchet algebra equipped with a smooth isometric action of a vector group V, and consider Rieffel’s deformation ${\mathcal{A}_J}$ of ${\mathcal{A}}$ . We construct an explicit isomorphism between the smooth crossed products ${V\ltimes\mathcal{A}_J}$ and ${V\ltimes\mathcal{A}}$ . When combined with the Elliott–Natsume–Nest isomorphism, this immediately implies that the periodic cyclic cohomology is invariant under deformation. Specializing to the case of smooth subalgebras of C*-algebras, we also get a simple proof of equivalence of Rieffel’s and Kasprzak’s approaches to deformation.  相似文献   

12.
We generalize the topological recursion of Eynard–Orantin (JHEP 0612:053, 2006; Commun Number Theory Phys 1:347–452, 2007) to the family of spectral curves of Hitchin fibrations. A spectral curve in the topological recursion, which is defined to be a complex plane curve, is replaced with a generic curve in the cotangent bundle T*C of an arbitrary smooth base curve C. We then prove that these spectral curves are quantizable, using the new formalism. More precisely, we construct the canonical generators of the formal ${\hbar}$ -deformation family of D modules over an arbitrary projective algebraic curve C of genus greater than 1, from the geometry of a prescribed family of smooth Hitchin spectral curves associated with the ${SL(2,\mathbb{C})}$ -character variety of the fundamental group π1(C). We show that the semi-classical limit through the WKB approximation of these ${\hbar}$ -deformed D modules recovers the initial family of Hitchin spectral curves.  相似文献   

13.
The symmetric algebra ${S(\mathfrak{g})}$ over a Lie algebra ${\mathfrak{g}}$ has the structure of a Poisson algebra. Assume ${\mathfrak{g}}$ is complex semisimple. Then results of Fomenko–Mischenko (translation of invariants) and Tarasov construct a polynomial subalgebra ${{\mathcal {H}} = {\mathbb C}[q_1,\ldots,q_b]}$ of ${S(\mathfrak{g})}$ which is maximally Poisson commutative. Here b is the dimension of a Borel subalgebra of ${\mathfrak{g}}$ . Let G be the adjoint group of ${\mathfrak{g}}$ and let ? = rank ${\mathfrak{g}}$ . Using the Killing form, identify ${\mathfrak{g}}$ with its dual so that any G-orbit O in ${\mathfrak{g}}$ has the structure (KKS) of a symplectic manifold and ${S(\mathfrak{g})}$ can be identified with the affine algebra of ${\mathfrak{g}}$ . An element ${x\in \mathfrak{g}}$ will be called strongly regular if ${\{({\rm d}q_i)_x\},\,i=1,\ldots,b}$ , are linearly independent. Then the set ${\mathfrak{g}^{\rm{sreg}}}$ of all strongly regular elements is Zariski open and dense in ${\mathfrak{g}}$ and also ${\mathfrak{g}^{\rm{sreg}}\subset \mathfrak{g}^{\rm{ reg}}}$ where ${\mathfrak{g}^{\rm{reg}}}$ is the set of all regular elements in ${\mathfrak{g}}$ . A Hessenberg variety is the b-dimensional affine plane in ${\mathfrak{g}}$ , obtained by translating a Borel subalgebra by a suitable principal nilpotent element. Such a variety was introduced in Kostant (Am J Math 85:327–404, 1963). Defining Hess to be a particular Hessenberg variety, Tarasov has shown that ${{\rm{Hess}}\subset \mathfrak{g}^{\rm{sreg}}}$ . Let R be the set of all regular G-orbits in ${\mathfrak{g}}$ . Thus if ${O\in R}$ , then O is a symplectic manifold of dimension 2n where n = b ? ?. For any ${O\in R}$ let ${O^{\rm{sreg}} = \mathfrak{g}^{\rm{sreg}} \cap O}$ . One shows that O sreg is Zariski open and dense in O so that O sreg is again a symplectic manifold of dimension 2n. For any ${O\in R}$ let ${{\rm{Hess}}(O) = {\rm{Hess}}\cap O}$ . One proves that Hess(O) is a Lagrangian submanifold of O sreg and that $${\rm{Hess}} = \sqcup_{O\in R}{\rm{Hess}}(O).$$ The main result of this paper is to show that there exists simultaneously over all ${O\in R}$ , an explicit polarization (i.e., a “fibration” by Lagrangian submanifolds) of O sreg which makes O sreg simulate, in some sense, the cotangent bundle of Hess(O).  相似文献   

14.
We extend the classical Schur–Weyl duality between representations of the groups ${SL(n, \mathbb{C})}$ and ${\mathfrak{S}_N}$ to the case of ${SL(n, \mathbb{C})}$ and the infinite symmetric group ${\mathfrak{S}_\mathbb{N}}$ . Our construction is based on a “dynamic,” or inductive, scheme of Schur–Weyl dualities. It leads to a new class of representations of the infinite symmetric group, which has not appeared earlier. We describe these representations and, in particular, find their spectral types with respect to the Gelfand–Tsetlin algebra. The main example of such a representation acts in an incomplete infinite tensor product. As an important application, we consider the weak limit of the so-called Coxeter–Laplace operator, which is essentially the Hamiltonian of the XXX Heisenberg model, in these representations.  相似文献   

15.
Given a positive and unitarily invariant Lagrangian ${\mathcal{L}}$ defined in the algebra of matrices, and a fixed time interval ${[0,t_0]\subset\mathbb R}$ , we study the action defined in the Lie group of ${n\times n}$ unitary matrices ${\mathcal{U}(n)}$ by $$\mathcal{S}(\alpha)=\int_0^{t_0} \mathcal{L}(\dot\alpha(t))\,dt, $$ where ${\alpha:[0,t_0]\to\mathcal{U}(n)}$ is a rectifiable curve. We prove that the one-parameter subgroups of ${\mathcal{U}(n)}$ are the optimal paths, provided the spectrum of the exponent is bounded by π. Moreover, if ${\mathcal{L}}$ is strictly convex, we prove that one-parameter subgroups are the unique optimal curves joining given endpoints. Finally, we also study the connection of these results with unitarily invariant metrics in ${\mathcal{U}(n)}$ as well as angular metrics in the Grassmann manifold.  相似文献   

16.
17.
We consider the free 2-nilpotent graded Lie algebra $\mathfrak{g}$ generated in degree one by a finite dimensional vector space V. We recall the beautiful result that the cohomology $H^ \cdot \left( {\mathfrak{g},\mathbb{K}} \right)$ of $\mathfrak{g}$ with trivial coefficients carries a GL(V)-representation having only the Schur modules V with self-dual Young diagrams {λ: λ = λ′} in its decomposition into GL(V)-irreducibles (each with multiplicity one). The homotopy transfer theorem due to Tornike Kadeishvili allows to equip the cohomology of the Lie algebra g with a structure of homotopy commutative algebra.  相似文献   

18.
Given a Banach representation of a Hilbert Lie group, the Lie algebra \(\mathfrak{G}\) of which is the closure of the union of an increasing sequence of finite dimensional subalgebras, we construct a Gårding domain on which we differentiate the group representation to a representation of a dense subalgebra of \(\mathfrak{G}\) .  相似文献   

19.
20.
Contrary to the eleven-parameter group consisting of Poincaré-transformations and dilatations, the group of so-called special conformal transformations can act on the Minkowski space only as a local conformal Lie transformation group. We show that the universal covering space of the compactified Minkowski space , together with an appropriate metric \(\tilde g\) on it, form a suitable Lorentz manifold that admits universal covering group of the “conformal group” of as a transitive Lie transformation group. This group respects the causality notion on usually defined on a Lorentz manifold. However, possesses only seven isometries in contrast to the well-known ten isometries on the Minkowski space , which correspond to conservation of energy-momentum and angular-momentum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号