首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispersion polymerization of 4-vinylpyridine was performed by using polystyrene-block-polybutadiene as stabilizer in a mixture of N,N-dimethylformamide (DMF) and toluene to produce polymer particles. The weight ratio of the solvents affects the particle size and dispersity. In the range of DMF content from 5 to 20 wt.-%, uniform particles of a diameter of ca. 1 μm were obtained. The present system was expanded to the preparation of monodisperse particles of poly[(4-vinylpyridine)-co-(methacrylic acid)].  相似文献   

2.
Chemically reactive particles with controllable sizes from 383 to 756 nm in very narrow size distributions (well below 5%) have been synthesized by the modified surfactant-free emulsion homopolymerization of inhibitor-free glycidyl methacrylate with the dropwise addition of ionic initiators during the initial reaction of 10 min. The effects of monomer concentration and the amount of initiator were systematically studied on the particle diameter. In addition, changes of the particle diameter and its size distribution during the whole synthesis process were also investigated. The mechanism for the formation of coalesced and highly monodisperse chemically reactive colloidal particles was discussed based on the colloidal stability governed by chemical reaction and physical interactions between the precursor or primary particles. Colloidal photonic crystals with different brilliant visible colors in a large scale were prepared by shearing assembly of such chemically reactive monodisperse particles with spin coating technique. The reflection wavelengths in the visible spectrum range are from the high-order including the second-order light diffraction of the as-prepared PGMA photonic crystals. Such monodisperse chemically reactive particles will be very useful in optical and sensing technologies, and in biochemical analysis.  相似文献   

3.
A method applying soap-free emulsion polymerization with an amphoteric initiator, 2,2′-azobis[N-(2-carboxyethyl)-2-2-methyl-propionamidine], is proposed for synthesis of highly monodisperse particles composed of magnetic nanoparticles (Fe3O4/γ–Fe2O3) and polystyrene. The magnetic nanoparticles were pretreated by surface modification for introducing double bonds onto the particles. In the polymerization, magnetic nanoparticles were continuously supplied to the system for a certain period after the initiation of polymerization at various pH. Dissociation degrees of ionizable groups in the initiator molecules were controlled through pH by changing NH3 concentrations at a constant NH4Cl concentration. Selection of suitable pH in the polymerization could produce polymer particles that perfectly incorporated the supplied magnetic nanoparticles. The magnetic polymer particles had a coefficient of variation of size distribution as low as 4.3% with an average diameter of 515 nm and a saturation magnetization of 7.3 emu/g-sample. Electrophoresis measurements indicated that the magnetic polymer particles had an isoelectric point of pH 4.1.  相似文献   

4.
Micron-sized, monodisperse composite polymer particles having "disc-like" and "polyhedral" shapes were prepared by seeded dispersion polymerization of 2-ethylhexylmethacrylate (EHMA) with 2.67-mum-sized polystyrene (PS) seed particles in methanol/water media in the presence of droplets of various saturated hydrocarbons and evaporation of the hydrocarbon after the polymerization. Such nonspherical shapes were based on the volume reduction due to the evaporation. The primary factors influencing the particle shape seemed to be the absorption rate of the hydrocarbon into the resulting PS/poly(EHMA)/hydrocarbon composite particles during the polymerization, which affected the viscosities and the volumes of the PS and poly(EHMA) phases. It was found that the morphological development during the polymerization was retarded at "hamburger-like" morphology, which is a precursor of the disc-like particle, although this morphology is a thermodynamically metastable state.  相似文献   

5.
Monodisperse porous polymer particles in the size range of 10 μm in diameter were prepared via seeded emulsion polymerization. Linear polymer (polystyrene seed) or a mixture of linear polymer and solvent or nonsolvent were used as inert diluents. The pore diameters of these porous polymer particles were on the order of 1000 Å with pore volumes up to 0.9 mL/g and specific surface areas up to 200 m2/g. The physical features of the porous polymer particles depended on the diluent type and the crosslinker content, as well as the molecular weight of polymer seed particles. By varying the molecular weight of the linear polymer, monodisperse porous polymer particles with different pore size distribution could be synthesized. Polymer seed with a low degree of crosslinking instead of linear polymer could also be used to prepare monodisperse porous polymer particles with smaller pore volume and pore size.  相似文献   

6.
Macroporous particles with large pores are used for size exclusion chromatography of carbohydrates with very high molecular weights. Macroporous particles of different sizes are used for multiple immunofluorometric analysis by flow cytometry. Porous magnetic particles with protein A coupled to the surface of the pores combine a high capacity in binding of IgG with easy handling of the particles. Magnetic beads with boronic acid coupled to the surface are applied for selective isolation of subclasses of cells. The beads are detached from the cells by addition of sorbitol, leaving free, pure cell fractions in good yield. The use of magnetic particles in molecular biology is described.  相似文献   

7.
A method is described for the preparation of monodisperse ellipsoidal particles of polystyrene in the colloidal size range. Monodisperse polystyrene particles were dispersed in a solution of polyvinyl alcohol. This dispersion was then allowed to form, by evaporation, a thin film of polyvinyl alcohol containing spherical polystyrene particles. Strips of this film were clamped into a metal frame, heated rapidly in an oil bath to 200°C and stretched to a predetermined extent in order to convert the spherical particles into ellipsoids; the film was then cooled. A wide range of axial ratios for a variety of initial particle sizes was obtained by this method.  相似文献   

8.
This article reports a facile controllable approach to prepare monodisperse nonspherical colloidal particles with cavity structures by one‐pot soap‐free emulsion polymerization of styrene (St), 3‐(trimethoxysilyl)propyl methacrylate (MPS), and acrylic acid (AA). In our strategy, only by varying the feeding time of AA to the as‐polymerized St and MPS, the nonspherical latex particles with single cavity of different surface roughness and multicavity structures could be successfully synthesized. The depth and width of the cavity can be also easily controlled by adjusting the amount of MPS and AA. A possible formation mechanism is proposed on the basis of experimental results. These nonspherical colloidal particles, which have controllable cavity structures, are good building blocks or templates for the construction of functional coating and complex colloidal architectures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1645–1652  相似文献   

9.
 Polymer modification of monodispersed colloidal silica (0.5 μm) with poly(maleic anhydride-co-styrene) (P(MA-ST)) and poly (maleic anhydride-co-methyl methacrylate) (P(MA-MMA)) and application of the composite particles to biomaterial carriers were investigated. The reaction of bovine serum albumin(BSA)-immobilized P(MA-MMA)/SiO2 with the anti-BSA antibody showed higher sensitivity in immunological agglutination test than BSA–P(MA-ST)/SiO2, though immobilization efficiency of BSA on P(MA-MMA)/SiO2 was lower than that on P(MA-ST)/SiO2. Alkaline phosphatase and glucose oxidase immobilized on the composite particles exhibited extremely low activities, but α-chymotrypsin immobilized on P(MA-MMA)/SiO2 and its derivative particles showed the relative activity of 12.5% and 16.1% to the native enzyme, respectively. Grafting of a hydrophilic polymer of poly(acrylic acid) to P(MA-ST)/SiO2 let to an increase of the immobilized α-chymotrypsin activity to give the maximum relative activity of 55.5%. Received: 23 August 1996 Accepted: 16 October 1996  相似文献   

10.
Monodisperse polystyrene latex particles with molecular weight on the order of 106 were used as inert diluents for the preparation of monodisperse porous styrene-divinylbenzene copolymer particles via seeded emulsion polymerization techniques. Mercury porosimetry and nitrogen adsorption-desorption isotherms were used to assess pore structure and pore size distribution. Pore size distribution was very sensitive to the molecular weight of the polystyrene latex particles used as inert diluent. Qualitative evidence from the techniques used indicated that the monodisperse porous polymer particles were macroporous (average pore diameter > 500 Å) in nature. As the molecular weight of the linear polymer decreased, the porous structure of the polymer particles ranged in complexity across the spectrum of macro/mesopore structures. Scanning electron microscope results indicated the existence of voids between the microspheres and their agglomerates within the porous polymer particle, and nitrogen adsorption isotherms confirmed that the pores were due to interstices between these crosslinked microspheres and agglomerates.  相似文献   

11.
12.
13.
The procedures and the backgrounds for the formation of monodispersed colloidal particles are reviewed, along with the personal view of the author's own, by classifying a wide variety of the systems. This article consists of the size distribution control for uniform colloidal systems with typical examples, including homogeneous and heterogeneous systems, and the crystal habit control of monodispersed particles.  相似文献   

14.
The non-template synthesis of monodisperse spherical particles of calcium carbonate is reported. Particles of a 3.5–4.5 μm size were produced by precipitation of calcium carbonate from alcohol solution at subzero temperatures.  相似文献   

15.
16.
Colloidal dispersions of Pt/Rh bimetallic particles have been synthesized by the reduction of Pt(IV)/Rh(III) ionic solutions by using borohydride-reduction in the presence of poly(N-vinyl-2-pyrrolidone). The size and the structure of the synthesized particles have been examined by transmission electron micrograph (TEM) and extended X-ray absorption fine structure (EXAFS). We have succeeded in producing the bimetallic Pt/Rh particles with an average diameter of 2.8 nm in polymer solutions by the stepwise addition of sodium borohydride aqueous solution. The distribution of different metallic species in a particle tended to be "cluster-in-cluster" structure, in contrast to the bimetallic particle with an average diameter of 1.4 nm synthesized by alcohol-reduction which have a core-shell structure.  相似文献   

17.
Utilizing a new type of monomer swelling method, 6.1 m-size monodisperse polymer particles were prepared by seeded polymerization. 1.8 m-size monodisperse polystyrene (PS) seed particles (1.8 m in size) were prepared by dispersion polymerization in ethanol-water (80/20, v/v) medium in the presence of poly(acrylic acid) as stabilizer with 2,2-azobisisobutyronitrile as initiator. The PS seed dispersion was mixed with ethanol-water (60/40, v/v) solution dissolving styrene (S) monomer, benzoyl peroxide as initiator, and poly(vinyl alcohol) as stabilizer. By slow, continuous, dropwise addition of water with a micro feeder into the mixture, the PS particles absorbed the many S monomers, which were separated from the medium and swelled from 1.8 m to 8.4 m while keeping the monodispersity high. We named this procedure the dynamic swelling method. Then, the seeded polymerization of the absorbed S monomer was carried out in the presence of NaNO2 as water-solube inhibitor.Part CXXII of the series Studies on Suspension and Emulsion.  相似文献   

18.
19.
A facile method for preparing highly monodisperse, sub-micrometre conjugated polymer particles is reported. The particles are prepared through emulsification of a conjugated polymer solution on a microfluidic chip followed by solvent evaporation. The particle size is tuned between 150 nm to 2 μm, by controlling the polymer concentration.  相似文献   

20.
Soap-free emulsion polymerization was extended to preparation of monodisperse poly(methyl methacrylate) (PMMA) particles incorporating rhodamine 6G (R6G) fluorescent molecules. The polymerization was conducted in the presence of an anionic monomer, p-styrenesulfonate (NaSS), which improved dispersion stability of the polymer particles. NaSS concentrations was ranged up to 2 mol/m3 H2O in the polymerization at 0.5 kmol/m3 H2O methyl methacrylate (MMA) monomer and 5 mol/m3 H2O potassium persulfate (KPS) initiator for R6G concentrations from 0.1 to 10 mol/m3-polymer. At R6G concentrations lower than 1.0 mol/m3-polymer, PMMA particles were highly monodisperse and incorporated most R6G molecules. The average sizes of PMMA particles were in a rage of 160-300 nm, and decreased with the concentration of NaSS. The high monodispersity of the particles enabled the fabrication of colloidal crystals of the particles with a vertical deposition method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号