首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two series of heteroleptic crown-substituted tris(phthalocyaninate) complexes (Pc)Ln[(15C5)4Pc]Ln(Pc) and [(15C5)4Pc]Ln[(15C5)4Pc]Ln(Pc), where 15C5 is 15-crown-5, (Pc2−) is the phthalocyaninate dianion, Ln = Nd, Eu, Ho, Er, and Yb, were prepared by the reaction of tetra-15-crown-5-phthalocyanine H2[(15C5)4Pc] with the corresponding lanthanide acetylacetonates and lanthanum bis(phthalocyaninate) La(Pc)2, which was used as a phthalocyaninate dianion donor. The composition and structure of the synthesized complexes were confirmed by MALDI TOF mass spectrometry, UV-Vis absorption spectroscopy, and 1H NMR. Complete assignment of the proton resonance signals of the paramagnetic lanthanide complexes was based on analysis of lanthanide-induced shifts.  相似文献   

2.
In this study, the titanyl and vanadyl phthalocyanine (Pc) salts (Bu4N+)2[MIVO(Pc4?)]2? (M=Ti, V) and (Bu3MeP+)2[MIVO(Pc4?)]2? (M=Ti, V) with [MIVO(Pc4?)]2? dianions were synthesized and characterized. Reduction of MIVO(Pc2?) carried out with an excess of sodium fluorenone ketyl in the presence of Bu4N+ or Bu3MeP+ is exclusive to the phthalocyanine centers, forming Pc4? species. During reduction, the metal +4 charge did not change, implying that Pc is an non‐innocent ligand. The Pc negative charge increase caused the C?N(pyr) bonds to elongate and the C?N(imine) bonds to alternate, thus increasing the distortion of Pc. Jahn–Teller effects are significant in the [eg(π*)]2 dianion ground state and can additionally distort the Pc macrocycles. Blueshifts of the Soret and Q‐bands were observed in the UV/Vis/NIR when MIVO(Pc2?) was reduced to [MIVO(Pc . 3?)] . ? and [MIVO(Pc4?)]2?. From magnetic measurements, [TiIVO(Pc4?)]2? was found to be diamagnetic and (Bu4N+)2[VIVO(Pc4?)]2? and (Bu3MeP+)2[VIVO(Pc4?)]2? were found to have magnetic moments of 1.72–1.78 μB corresponding to an S=1/2 spin state owing to VIV electron spin. As a result, two latter salts show EPR signals with VIV hyperfine coupling.  相似文献   

3.
Praseodymium(III) complexes with tetra-15-crown-5-phthalocyanine—the neutral radical [(R4Pc)Pr3+(R4Pc2?)]0 and one-electron reduced [(R4Pc2?)Pr3+(R4Pc2?)]? forms of the sandwich double-decker complex and the triple-decker complex Pr2(R4Pc)3 (R4Pc2? is [4,5,4′,5′,4″,5t",4″′,5″′-tetrakis(1,4,7,10,13-pentaoxatridecamethylene)phthalocyaninate ion])—have been synthesized and spectrally characterized. These compounds have been obtained by direct interaction of tetra-15-crown-5-phthalocyanine with praseodymium(III) acetate or acetylacetonate. The salt anion has an effect on the yield and structure of the reaction products. The complexes have been obtained in high yields, isolated, and characterized by different physicochemical methods: UV and visible electronic absorption spectroscopy, 1H NMR, and MALDI-TOF mass spectrometry. The double-decker complex is stable in the solid state and in solutions. The triple-decker complex is stable only in the solid state. In a chloroform-methanol (10 vol %) solution, it slowly decomposes.  相似文献   

4.
Synthesis and Spectroscopical Properties of the Mixed-Valent Di(phthalocyaninato)lanthanides(III) Green di(phthalocyaninato)lanthanide(III), [M(Pc)2] (M = rare earth metal ion: La‥(-Ce, Pm)‥Lu) is prepared by anodic oxidation of (nBu4N)[M(Pc2?)2] dissolved in CH2Cl2/(nBu4N)ClO4. The UV-Vis-NIR spectra show intense π-π* transitions at ? 15000 cm?1 and 31000 cm?1, typical for Pc2? ligands. Bands at ? 11000 cm?1 and 22000 cm?1 indicate the equal presence of a Pc? π-radical. The metal dependent NIR band between 4000 and 9000 cm?1 is characteristic for these mixed-valent complexes and assigned to an intervalence transition (b1 → a2; D4d symmetry). Most bands are shifted linearly with the MIII radius. In the IR and resonance Raman (r.r.) spectra the typical vibrations of the Pc? π-radical are dominant. These are essentially metal independent excepting the C? C and C? N vibrations of the inner (CN)8 ring. The sym. M? N stretching vibration between 141 (La) and 168 cm?1 (Lu) is selectively r.r.-enhanced when excited with 1064 nm.  相似文献   

5.
Synthesis and Properties of the Diphthalocyaninates of Yttrium and Indium Blue di(phthalocyaninato(2–))metalates of tervalent yttrium and indium are obtained by the reaction of yttrium acetate or anhydrous indium chloride with molten phthalodinitrile in the presence of potassium methylate and isolated as complex salts with organic cations. Anodic oxidation of (nBu4N)[M(Pc2?)2] (M = Y, In) yields crystals of green paramagnetic di(phthalocyaninato)metal(III)-dichloromethane solvate, [M(Pc)2] · CH2Cl2eff = 1.8/1.9 B.M. (Y/In)). Red brown di(phthalocyaninato)metal(III)-polybromide, [M(Pc?)2]Brx is prepared by oxidation with bromine in excess. The redox properties of the di(phthalocyaninato)metalates(III) are investigated by cyclic voltammetry and difference pulse polarography. A quasi reversible (ΔE ? 60 mV) one electron process at 0.09 V (Y) and ?0.07 V (In) is assigned to the redox couple [M(Pc2?)2]?/[M(Pc)2]. Electronic absorption spectra as well as MIR/FIR and resonance Raman spectra are reported. The characteristic features of the three oxidation states and the influence of the ionic radius and the electron configuration of the metal ion are discussed.  相似文献   

6.
Preparation and Properties of Tetragonal α-Di(phthalocyaninato(1?))praseodymium(III)-polyhalides; Crystal Structure of α-[Pr(Pc?)2]Br1.5 Brown red di(phthalocyaninato(1?))-praseodym(III)-polyhalides [Pr(Pc?)2]Xy (X = Br, I) of variable composition (1 ≤ y ≤ 2.5) are formed by (electro)chemical oxidation of [Pr(Pc2?)2]?. The thermical decomposition of these polyhalides at 250°C yields partially oxidized, green α-[PrPc?Pc2?]. Due to strong spin–spin coupling of the phthalocyanin-π-radicals only PrIII contributes to the magnetic moment of ca. 3.0 B.M. for all complexes. Green metallic prisms of [Pr(Pc?)2]Br1.5 crystallize in the tetragonal α-modification: space group P4/nnc with a = 19.634(5) Å, c = 6.485(2) Å; Z = 2. In the sandwich complex PrIII is eightfold coordinated by the isoindoline N-atoms of the two staggered (41°), nearly planar Pc?- ligands. The quasi-onedimensional character of the structure along [001] is due to the infinite columns of Pc? ligands. The superperiod along [001] is a consequence of the distribution of the Pr atoms onto two incompletely filled crystallographic positions at a distance of c/2 and the disordered chains of the bromine atoms extending in the same direction. Powder diffractograms of Pr(Pc )2Br2, [Pr(Pc?)2]I2 und [PrPc Pc2?] confirm the tetragonal α-modification of these complexes, too. The content of tribromide correlates with the population of the Pr(2)-site. In the UV-VIS-NTR absorption spectrum of a thin film of Pr(Pc )2Br, the intense bands at 13.9 and 19.5 kK are assigned to the B and Q transition, respectively. The D band at 9. kK is characteristic for isolated dimeric Pc?-π-radicals. Due to increasing electron delocalisation as a result of the growing columns the D band is shifted to lower energy appearing successively at 6.05 and 3.3 kK. The mir and resonance Raman (RR) spectra of α-[Pr(Pr?)2]Xy, (X = Br, I) show the well known diagnostic bands for Pc?-π-radicals. Thc RR spectrum of the polyiodide is dominated by the overtone progression of the totally symmetric (I-I) stretching vibration of the triiodide at 108cm?1. The FT-Raman spectra are also marked by the totally symmetric stretching vibration of the polyhalides (Br3 : 145cm 1; 13?:105cm?1; I5? 151 cm?1).  相似文献   

7.
Synthesis and Spectroscopical Properties of Di(phthalocyaninato(1?))lanthanidepolybromide; Crystal Structure of α-Di(phthalocyaninato)samariumpolybromide, α-[Sm(Pc)2]Br1.45 and α-Di(phthalocyaninato)samariumperchlorate, α-[Sm(Pc)2](ClO4)0.63 Bronze-coloured di(phthalocyaninato)lanthanidepolybromide, [Ln(Pc?)2]Bry (Ln = La…(? Ce, Pm)…Lu; y > 1.5) is prepared by oxidation of (nBu4N)[Ln(Pc2?)2] with bromine in excess. The UV-VIS-NIR spectra show the typical B and Q1 bands of the Pc? ligand at ~ 14 kK and ~ 20 kK. For the [Ln(Pc?)2]+ cation a NIR(D) band between 9,14 kK (La) and 11,50 kK (Lu) is characteristic for dimeric cofacial Pc? radicals. Within the row La…Lu, there is a linear relationship of the hypsochromic shift of the strong bands and the LnIII radius. In the case of La? Nd the D band shifts successively with longer time of bromination to ~ 3 kK as a result of increasing electron delocalisation. Characteristic vibrational bands are at ~ 1350/1450 cm?1 (IR) and ~ 560/1120/1170/1600 cm?1 (RR). In the FT-Raman spectra the totally symmetric Ln? N stretching vibration between 141 cm?1 (La) and 172 cm?1 (Lu) is selectively enhanced. As shown by α-[Sm(Pc)2]Br1,45 and α-[Sm(Pc)2](ClO4)0,63 only partially ringoxidized complexes are obtained by the anodic oxidation. Both crystallize in the tetragonal space group P4/nnc. The [Sm(Pc)2] molecular building block contains two nearly planar staggered (~41°) Pc rings packed in columns parallel along [001] leading to the quasi-one-dimensional structure. There is a statistical disorder of the SmIII and the ClO4? resp. Br?/Br3? ions over two incompletely filled crystallographic positions for the cation resp. anion. This results in a partial oxidation of the Pc ligand, which in the picture of localized valence states for α-[Sm(Pc)2](ClO4)0,63 corresponds to [SmPc?Pc2?] · 2[Sm(Pc?)2](ClO4). Accepting the same valence state for [Sm(Pc)2]Br1,45 five positive charges are compensated by two Br? and three Br3?. The spectroscopic differences of the partially and fully oxidized complexes are discussed.  相似文献   

8.
Synthesis and Properties of Diphthalocyaninates of Bismuth, [Bi(Pc)2]k (k = 1?, 0, 1+); Crystal Structure of mixed-valent [Bi(Pc)2] · CH2Cl2 Blue di(phthalocyaninato(2-))bismuthate(III), [Bi(Pc2?)2]?, is obtained by the reaction of BiO(NO3) with molten 1,2-dicyanobenzene in the presence of potassium methylate and isolated as tetra-n-butylammonium (nBu4N)+ and bis(triphenylphosphine)iminium (PNP)+ salt. Green mixed-valent [Bi(Pc)2] · CH2Cl2 is prepared by anodic oxidation of [Bi(Pc2?)2]?. It crystallizes in the orthorhombic γ modification (Pnma; a = 28.176(5), b = 22.913(3), c = 7.925(1) Å, Z = 4). The BiIII ion is eightfold coordinated by the Niso atoms of the slightly distorted Pc ligands in a square antiprismatic manner. The average Bi? Niso bond distance is 2.467 Å. The complex is paramagnetic (μeff = 1.84 μB). Oxidation of [Bi(Pc2?)2]? with bromine yields purple, diamagnetic [Bi(Pc?)2]Brx (1.5 ≤ x ≤ 2.5). The redox properties are investigated electrochemically. UV-Vis-NIR, MIR/FIR and resonance Raman spectra of the new bismuth(III) complexes are discussed and compared with those of diphthalocyaninates of the lanthanides.  相似文献   

9.
The electronic absorption spectroscopic data for two series of 60 unsubstituted/substituted bis(phthalocyaninato) and mixed [tetrakis(4-chlorophenyl)porphyrinato](phthalocyaninato) rare earth complexes M(Pc)2, M(Pc)2 and M(TClPP)(Pc) [M = Y, La…Lu except Pm; Pc = dianion of 2,3,9,10,16,17,23,24-octakis(4-methoxyphenoxy)phthalocyanine [Pc(MeOPhO)8], dianion of 3(4),12(13),21(22),30(31)-tetra(tert-butyl)phthalocyanine (TBPc) and TClPP = tetra(4-chloro)phenylporphyrin] have been measured in CHCl3. In this paper, the influence of the symmetry of macrocycle rare earth molecules, the effects of ionic radius of the rare earth metal and the influence of substituent species (tert-butyl and 4-methoxyphenoxy groups) onto the peripheral benzene rings on the electronic absorption characteristics of sandwich-type compounds have also been tentatively studied in detail.  相似文献   

10.
The photoelectric sensitivity and photorefractive properties at 1064 nm of composites consisting of poly(vinyl carbazole) (PVC), complexes of ruthenium(II) with tetra-15-crown-5-phthalocyanine and axially coordinated CO and CH3OH molecules (R4Pc)Ru(CO)(CH3OH), R4Pc2? is tetrakis-(1,4,7,10,13-pentaoxatridecamethylene)phthalocyaninate ion in the presence and absence of ferrocene were studied. The nature of the optical absorption within the near IR region in composites prepared from PVC and (R4Pc)Ru(TED)2 (TED is triethylenediamine) and (R4Pc)Ru(CO)(CH3OH) is discussed. It was established that the photoelectric, non-linear optical, and photorefractive properties of the polymer composite are determined by supramolecular ensemble composed of Ru(II) crown-phthalocyanines.  相似文献   

11.
It is established that supramolecular ensembles on the basis of the complex of ruthenium(II) with tetra-15-crown-5-phthalocyanine and axially coordinated triethylenediamine molecules (R4Pc)Ru(TED)2, where R4Pc2? and TED denote 4,5,4′,5′,4″,5″4?,5?-tetraksis-(1,4,7,10,13-pentaoxatridecamethylene)phthalocyaninate ion and triethylenediamine molecule, respectively) make an aromatic polyamide layer photoelectrically sensitive to 1064-nm Nd:YAG laser radiation, exhibit third-order susceptibility, and, consequently, impart photorefractive properties to the polymer layer at this wavelength.  相似文献   

12.
The cation-induced aggregation of sandwich crown-substituted complexes [Ln(R4Pc)2] (Ln = Lu (I) and Yb (II), R4Pc2? is the 4,5,4′,5′,4″,5″,4?,5?-tetrakis(1,4,7,10,13-pentaoxatridecamethylene)phthalocyaninate ion) and Ln2(R4Pc)3(Ln = Lu (III) and Yb (IV) in a CDCl3-DMSO-d 6 solution has been studied by 1H NMR. The data obtained are consistent with the conclusions concerning the composition of supramolecular aggregates drawn from spectrophotometric titration data. The molecules of double-decker complexes I and II form supramolecular oligomers, whereas triple-decker complexes III and IV form supramolecular dimers, which is presumably due to the stronger distortion of the planes of the outer decks of the triple-decker complexes as compared to their double-decker analogues.  相似文献   

13.
A review of coordination compounds of several metals (Co2+, Ru2+, Zn2+, Al3+, Y3+, Ln3+ = La, Gd, Yb, Lu) with tetra-crown-substituted phthalocyanine H2R4Pc (R4Pc2? = [4,5,4′,5′,4′′,5′′,4′′′,5′′′-tetrakis(1,4,7,10,13-pentaoxotridecamethylen)phthalocyaninate-ion]) has been presented. The syntheses of compounds with a given tetra-azamacrocyclic ligand are described. The template method based on the crown-substituted phthalodinitrile is the optimum technique for preparation of Ru2+ monophthalocyaninate and sandwich complexes of Lu3+. For other rare earth metals the new synthetic approach based on the application of the H2R4Pc ligand has been suggested. Some aspects of supramolecular chemistry including cation-induced aggregation in solutions have been discussed for the compounds of this class.  相似文献   

14.
A novel approach for the structural analysis of heteroleptic triple‐decker (porphyrinato)(phthalocyaninato) lanthanides(III) in solutions is developed. The developed approach consists in molecular mechanics (MM+) optimization of the geometry of the complex taking into account the lanthanide‐induced shift (LIS) datasets. LISs of the resonance peaks in 1H NMR spectra of a series of symmetric complexes [An4P]Ln[(15C5)4Pc]Ln[An4P], where An4P2? is 5,10,15,20‐tetrakis(4‐methoxyphenyl)porphyrinato‐dianion, [(15C5)4Pc]2? is 2,3,9,10,16,17,24,25‐tetrakis(15‐crown‐5)phthalocyaninato‐dianion and Ln = La, Ce, Pr, Nd, Sm, Eu, are analyzed. Analysis of LISs showed two sets of protons in the molecule with opposite signs of shift. Two‐nuclei analysis of LISs testifies isostructurality of the whole series of investigated complexes in solution despite contraction of the lanthanide ions. Model‐free separation of contact and dipolar contributions of LISs was performed with one‐nucleus technique and did not show changes in contact and dipolar terms within the investigated series. MM+ optimization of the molecular structure allowed the interpretation of features of LIS for each particular group of protons. Parameterization of MM + ‐optimized model of molecule with values of structure‐dependent dipolar contributions of LIS allows the development of the precise structural model of the triple‐decker complex in solution. This approach allows the determination of the geometry and structure of the sandwich macrocyclic tetrapyrrolic complexes together with conformational analysis of flexible peripheral substituents in solutions. The developed method can be applied with minor modifications for the determination of structural parameters of other types of lanthanides(III) complexes with tetrapyrrolic ligands and also supramolecular systems based on them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
《Polyhedron》1999,18(21):2775-2780
Triclinic crystals of bismuth(III) triple-decker phthalocyanine, Bi2Pc3, Pc=C32H16N82−, were grown directly by the reaction of Bi2Se3 with 1,2-dicyanobenzene at 220°C. The Bi2Pc3 molecule is centrosymmetric with the bismuth atoms located closer to the peripheral phthalocyaninato(2−) rings than to the central ring. Each bismuth(III) ion is connected by four N-isoindole atoms to the peripheral and by four N-isoindole to the central Pc ring with average distances of 2.333 and 2.747 Å, respectively. This indicates a stronger connection of Bi(III) to the peripheral saucer-shaped macrocyclic rings than to the central rings. The neighbouring phthalocyaninato(2−) moieties in the Bi2Pc3 molecule are separated by a distance of 3.101(5) Å. The central Pc ring is rotated by 36.4° with respect to the peripheral ones. Differences in Bi–N bond lengths are a result of interaction of the bismuth ion with peripheral and central rings as well as the repulsion forces between two bismuth ions in the same Bi2Pc3 molecule, which are separated by a distance of 3.839(2) Å. The crystal packing is characterized by a distance of 3.56 Å between Pc rings of neighbouring Bi2Pc3 molecules.  相似文献   

16.
The detailed knowledge about the structure of multinuclear paramagnetic lanthanide complexes for the targeted design of these compounds with special magnetic, sensory, optical and electronic properties is a very important task. At the same time, establishing the structure of such multinuclear paramagnetic lanthanide complexes in solution, using NMR is a difficult task, since several paramagnetic centers act simultaneously on the resulting chemical shift of a particular nucleus. In this paper, we have demonstrated the possibility of molecular structure determination in solution on the example of binuclear triple-decker lanthanide(III) complexes with tetra-15-crown-5-phthalocyanine Ln2[(15C5)4Pc]3 {where Ln = Tb (1) and Dy (2)} by quantitative analysis of the pseudo-contact lanthanide-induced shifts (LIS). The symmetry of complexes was used for the simplification of the calculation of pseudo-contact shifts on the base of the expression for the magnetic susceptibility tensor in the arbitrary oriented magnetic axis system. Good agreement between the calculated and experimental shifts in the 1H NMR spectra indicates the similarity of the structure for the complexes 1 and 2 in solution of CDCl3 and the structure in the crystalline phase, found from the data of the X-ray structural study of the similar complex Lu2[(15C5)4Pc]3. The described approach can be useful for LIS analysis of other polynuclear symmetric lanthanide complexes.  相似文献   

17.
《Polyhedron》2007,26(9-11):1859-1862
A quantum chemical study based on the density functional theory (DFT) on anionic and cationic bis(phthalocyaninato)lanthanides revealed that removal of two electrons from the anionic complex shortens considerably the separation between phthalocyaninato (Pc) ligands. This suggests that [Pc2Tb]+, which is generated by two-electron oxidation from the [Pc2Tb] SMM previously reported, can have significantly larger ligand field splitting than the original anionic form.  相似文献   

18.
Ruthenium(II) Phthalocyaninates(2–): Synthesis and Properties of (Acido)(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) (nBu4N)[Ru(OH)2Pc2?] is reduced in acetone with carbonmonoxid to blue-violet [Ru(H2O)(CO)Pc2?], which yields in tetrahydrofurane with excess (nBu4N)X acido(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) isolated as red-violet, diamagnetic (nBu4N) complex salt. The UV-Vis spectra are dominated by the typical π-π* transitions of the Pc2? ligand at approximately 15100 (B), 28300 (Q1) und 33500 cm?1 (Q2), only fairly dependent of the axial ligands. v(C? O) is observed at 1927 (X = I), 1930 (Cl, Br), 1936 (N3, NCO) 1948 cm?1 (NCS), v(C? N) at 2208 cm?1 (NCO), 2093 cm?1 (NCS) and v(N? N) at 2030 cm?1 only in the MIR spectrum. v(Ru? C) coincides in the FIR spectrum with a deformation vibration of the Pc ligand, but is detected in the resonance Raman(RR) spectrum at 516 (X = Cl), 512 (Br), 510 (N3), 504 (I), 499 (NCO), 498 cm?1 (NCS). v(Ru? X) is observed in the FIR spectrum at 257 (X = Cl), 191 (Br), 166 (I), 349 (N3), 336 (NCO) and 224 cm?1 (NCS). Only v(Ru? I) is RR-enhanced.  相似文献   

19.
Crystalline {Cryptand(Na+)}[(COD)RhICl⋅SnII(Pc3−)]⋅2C6H4Cl2 ( 1 ) and {Cryptand(Cs+)}[(COD)RhI⋅SnII(Pc4−)]⋅C6H5CH3 ( 2 ) complexes were obtained via the interaction of [SnII(Pc3−)] and [SnII(Pc4−)]2−, respectively, with organometallic {(COD)RhCl}2 dimer (COD is 1,5-cyclooctadiene). Dissociation of {(COD)RhCl}2 followed by the Rh−Sn binding is observed at the formation of 1 . Elimination of the chlorine atom at the rhodium atom is observed in 2 , and rhodium is additionally coordinated to the imine nitrogen atom of Pc4−. The complexes contain mono- Pc⋅3− and doubly reduced Pc4− species, respectively, that is supported by the data of XRD analysis as well as optical and magnetic properties of 1 and 2 . There is an alternation of C-Nimine bonds in the macrocycles, which gradually increases with increasing negative charge on the macrocycle. The difference between shorter and longer bonds increases from 0.051 Å in Pc3− to 0.075 Å in Pc4−. The formation of 1 is accompanied by an essential blue shift of the Q-band of starting SnPc and the appearance of a new intense band at 1031 nm. The even stronger shift of the Q-band is observed in the spectrum of 2 , but the band in the near-IR range becomes weaker. The value of effective magnetic moment of 1 is 1.76 μB at 300 K corresponding the contribution of the Pc3− radical trianions (S=1/2). Only weak magnetic coupling with the Weise temperature of −3 K is observed in 1 due to weak π–π interaction between the macrocycles in the chains. Paramagnetic Pc3− species additionally monitored by EPR spectroscopy show a strong temperature dependence of g-factor and linewidth of the EPR signal. Complex 2 is diamagnetic and EPR silent.  相似文献   

20.
A “metal–ketimine+ArI(OR)2” approach has been developed for preparing metal–ketimido complexes, and ketimido ligands are found to stabilize high‐valent metallophthalocyanine (M? Pc) complexes such as ruthenium(IV) phthalocyanines. Treatment of bis(ketimine) ruthenium(II) phthalocyanines [RuII(Pc)(HN?CPh2)2] ( 1a ) and [RuII(Pc)(HNQu)2] ( 1b ; HNQu=N‐phenyl‐1,4‐benzoquinonediimine) with PhI(OAc)2 affords bis(ketimido) ruthenium(IV) phthalocyanines [RuIV(Pc)(N?CPh2)2] ( 2a ) and [RuIV(Pc)(NQu)2] ( 2b ), respectively. X‐ray crystal structures of 1b and [RuII(Pc)(PhN?CHPh)2] ( 1c ) show Ru? N(ketimine) distances of 2.075(4) and 2.115(3) Å, respectively. Complexes 2a , 2b readily revert to 1a , 1b upon treatment with phenols. 1H NMR spectroscopy reveals that 2a , 2b are diamagnetic and 2b exists as two isomers, consistent with a proposed eclipsed orientation of the ketimido ligands in these ruthenium(IV) complexes. The reaction of 1a , 1b with PhI(OAc)2 to afford 2a , 2b suggests the utility of ArI(OR)2 as an oxidative deprotonation agent for the generation of high‐valent metal complexes featuring M? N bonds with multiple bonding characters. DFT and time‐dependent (TD)‐DFT calculations have been performed on the electronic structures and the UV/Vis absorption spectra of 1b and 2b , which provide support for the diamagnetic nature of 2b and reveal a significant barrier for rotation of the ketimido group about the Ru? N(ketimido) bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号