首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
In this article, we study the linear and nonlinear thermal instability in a horizontal porous medium saturated by a nanofluid. For this, the momentum equation with Brinkman model has been used. Also, it incorporates the effect of Brownian motion along with thermophoresis. The linear stability is based on normal mode technique, and for nonlinear analysis, the truncated Fourier series involving only two terms has been used. The expression of Rayleigh number for linear theory has been derived, and the effects of various parameters on Rayleigh number have been presented graphically. Weak nonlinear theory is used to find the concentration and the thermal Nusselt numbers. The behavior of the concentration and thermal Nusselt numbers is investigated and depicted graphically, by solving the finite amplitude equations using a numerical method.  相似文献   

2.
Effect of rotation on linear and nonlinear instability of cross-diffusive convection in an anisotropic porous medium saturated with Newtonian fluid has been investigated. Normal mode technique has been used for linear stability analysis, however nonlinear analysis is done using spectral method, involving only two terms. The Darcy model with Coriolis terms, has been employed in the momentum equation. Nonlinear analysis is used to find the thermal and concentration Nusselt numbers. The effects of various parameters, including Soret and Dufour parameters, on stationary and oscillatory convection, have been obtained, and shown graphically.  相似文献   

3.
In this article, linear and nonlinear thermal instability in a rotating anisotropic porous layer with heat source has been investigated. The extended Darcy model, which includes the time derivative and Coriolis term has been employed in the momentum equation. The linear theory has been performed by using normal mode technique, while nonlinear analysis is based on minimal representation of the truncated Fourier series having only two terms. The criteria for both stationary and oscillatory convection is derived analytically. The rotation inhibits the onset of convection in both stationary and oscillatory modes. Effects of parameters on critical Rayleigh number has also been investigated. A weak nonlinear analysis based on the truncated representation of Fourier series method has been used to find the Nusselt number. The transient behavior of the Nusselt number has also been investigated by solving the finite amplitude equations using a numerical method. Steady and unsteady streamlines, and isotherms have been drawn to determine the nature of flow pattern. The results obtained during the analysis have been presented graphically.  相似文献   

4.
The present paper studies the effect of rotation on the thermal instability in a horizontal layer of a Newtonian nanofluid which incorporates the effect of Brownian motion along with thermophoresis. In order to find the concentration and the thermal Nusselt numbers for unsteady state, a nonlinear analysis, using a minimal representation of the truncated Fourier series of two terms, has been performed. The results obtained are then presented graphically. It is observed that rotation delays the rate of heat and mass transferred, representing a delay in the onset on convection. This shows a stabilizing effect for a rotating system against a nonrotating system.  相似文献   

5.
In this article, we study double-diffusive convection in a horizontal porous medium saturated by a nanofluid, for the case when the base fluid of the nanofluid is itself a binary fluid such as salty water. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis, while the Darcy model is used for the porous medium. The thermal energy equations include the diffusion and cross-diffusion terms. The linear stability is studied using normal mode technique and for non-linear analysis, a minimal representation of the truncated Fourier series analysis involving only two terms has been used. For linear theory analysis, critical Rayleigh number has been obtained, while non-linear analysis has been done in terms of the Nusselt numbers.  相似文献   

6.
The free convection of non-Newtonian nanofluids along a vertical plate in porous medium is investigated numerically. It is assumed that the medium contains gyrotactic microorganisms along with nanoparticles and the plate is subjected to prescribed temperature, concentration of nanoparticles and density of motile microorganisms. It is further assumed that the plate is impermeable. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformations. The nonlinear ordinary differential equations are then solved by a finite difference numerical method. The effects of controlling parameters on several dimensionless quantities and numbers of our interest are investigated. The numerical results are compared with the published data and an excellent agreement has been found. It is found that nanofluid and bioconvection parameters have strong effects on local Nusselt, Sherwood and density numbers.  相似文献   

7.
In the present study, double-diffusive convection in an anisotropic porous layer with an internal heat source, heated and salted from below, has been investigated. The generalized Darcy model is employed for the momentum equation. The fluid and solid phases are considered to be in equilibrium. Linear and nonlinear stability analyses have been performed. For linear theory normal mode technique has been used, while nonlinear analysis is based on a minimal representation of truncated Fourier series. Heat and mass transfers across the porous layer have been obtained in terms of Nusselt number Nu and Sherwood number Sh, respectively. The effects of internal Rayleigh number, anisotropy parameters, concentration Rayleigh number, and Vadasz number on stationary, oscillatory, and weak nonlinear convection are shown graphically. The transient behaviors of Nusselt number and Sherwood number have been investigated by solving the finite amplitude equations using a numerical method. Streamlines, isotherms, and isohalines are drawn for both steady and unsteady (time-dependent) cases. The results obtained, during the above analyses, have been presented graphically, and the effects of various parameters on heat and mass transfers have been discussed.  相似文献   

8.
The steady natural convection flow on a horizontal cone embedded in a saturated porous medium with non-uniform wall temperature/concentration or heat/mass flux and suction/injection has been investigated. Non-similar solutions have been obtained. The nonlinear coupled differential equations under boundary layer approximations governing the flow have been numerically solved. The Nusselt and Sherwood numbers are found to depend on the buoyancy forces, suction/injection rates, variation of wall temperature/concentration or heat/mass flux, Lewis number and the non-Darcy parameter.  相似文献   

9.
Linear and non-linear thermal instability in a rotating anisotropic porous medium, saturated with viscoelastic fluid, has been investigated for free-free surfaces. The linear theory is being related to the normal mode method and non-linear analysis is based on minimal representation of the truncated Fourier series analysis containing only two terms. The extended Darcy model, which includes the time derivative and Coriolis terms has been employed in the momentum equation. The criteria for both stationary and oscillatory convection is derived analytically. The rotation inhibits the onset of convection in both stationary and oscillatory modes. A weak non-linear theory based on the truncated representation of Fourier series method is used to find the thermal Nusselt number. The transient behaviour of the Nusselt number is also investigated by solving the finite amplitude equations using a numerical method. The results obtained during the analysis have been presented graphically.  相似文献   

10.
The effect of local thermal non-equilibrium on linear and non-linear thermal instability in a horizontal porous medium saturated by a nanofluid has been investigated analytically. The Brinkman Model has been used for porous medium, while nanofluid incorporates the effect of Brownian motion along with thermophoresis. A three-temperature model has been used for the effect of local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. The linear stability is based on normal mode technique, while for nonlinear analysis, a minimal representation of the truncated Fourier series analysis involving only two terms has been used. The critical conditions for the onset of convection and the heat and mass transfer across the porous layer have been obtained numerically.  相似文献   

11.
A numerical study of a non-Darcy mixed convective heat and mass transfer flow over a vertical surface embedded in a dispersion, melting, and thermal radiation is porous medium under the effects of double investigated. The set of governing boundary layer equations and the boundary conditions is transformed into a set of coupled nonlinear ordinary differential equations with the relevant boundary conditions. The transformed equations are solved numerically by using the Chebyshev pseudospectral method. Comparisons of the present results with the existing results in the literature are made, and good agreement is found. Numerical results for the velocity, temperature, concentration profiles, and local Nusselt and Sherwood numbers are discussed for various values of physical parameters.  相似文献   

12.
The oscillatory motion of natural convection in a porous medium has been investigated experimentally using a Hele-Shaw cell technique. The cell has been heated on the lower half and cooled on the upper half along the same vertical sidewall. Flows have been visualized using the pH indicator method. Photographs of natural convection patterns as well as average Nusselt number data have been presented for different Rayleigh numbers. Oscillatory motion of natural convection has been observed for large enough Rayleigh numbers and the critical Rayleigh number has been estimated to be between 120 and 450. Scaling analysis has been conducted to understand the heat transfer and the oscillating mechanism. According to the scaling analysis, it has been found that the average Nusselt number is proportional to the square root of the Rayleigh number, and that the oscillation frequency is proportional to the Rayleigh number. Obtained experimental data support the scaling analysis.  相似文献   

13.
Linear and nonlinear stability analysis for the onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The modified Darcy equation that includes the time derivative term is used to model the momentum equation. In conjunction with the Brownian motion, the nanoparticle fraction becomes stratified, hence the viscosity and the conductivity are stratified. The nanofluid is assumed to be diluted and this enables the porous medium to be treated as a weakly heterogeneous medium with variation, in the vertical direction, of conductivity and viscosity. The critical Rayleigh number, wave number for stationary and oscillatory mode and frequency of oscillations are obtained analytically using linear theory and the non-linear analysis is made with minimal representation of the truncated Fourier series analysis involving only two terms. The effect of various parameters on the stationary and oscillatory convection is shown pictorially. We also study the effect of time on transient Nusselt number and Sherwood number which is found to be oscillatory when time is small. However, when time becomes very large both the transient Nusselt value and Sherwood value approaches to their steady state values.  相似文献   

14.
An analysis is performed to study the effects of the chemical reaction and heat generation or absorption on a steady mixed convection boundary layer flow over a vertical stretching sheet with nonuniform slot mass transfer. The governing boundary layer equations with boundary conditions are transformed into the dimensionless form by a group of nonsimilar transformations. Nonsimilar solutions are obtained numerically by solving the coupled nonlinear partial differential equations using the quasi-linearization technique combined with an implicit finite difference scheme. The numerical computations are carried out for different values of dimensionless parameters to display the distributions of the velocity, temperature, concentration, local skin friction coefficient, local Nusselt number, and local Sherwood number. The results obtained indicate that the local Nusselt and Sherwood numbers increase with nonuniform slot suction, but nonuniform slot injection produces the opposite effect. The local Nusselt number decreases with heat generation and increases with heat absorption.  相似文献   

15.
The nonlinear convective flow of an Oldroyd-B fluid due to a nonlinear stretching sheet with varying thickness is examined. The salient features of the random movement and thermophoresis are described. Formulation is made with the nonlinear thermal radiation and heat generation/absorption. Further, the convective conditions and double stratification are taken into account. The resulting flow problems are tackled by the optimal homotopy analysis method(OHAM). The resulting nonlinear problems are solved for the velocity, temperature, and concentration fields. The temperature and concentration gradients are numerically discussed. The total residual error is calculated.The Nusselt number is an increasing function of the radiation parameter. The Sherwood number increases with the increase in the solutal stratification or the Schmidt number.The main outcomes are presented in conclusions. This study has a wide range of applications such as thermal stratification of oceans, reservoirs, and rivers, density stratification of atmosphere, hydraulic lifts, and polymer processing.  相似文献   

16.
Dulal Pal 《Meccanica》2009,44(2):145-158
In this paper an analysis has been made to study heat and mass transfer in two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in the presence of buoyancy force and thermal radiation. The similarity solution is used to transform the problem under consideration into a boundary value problem of nonlinear coupled ordinary differential equations containing Prandtl number, Schmidt number and Sherwood number which are solved numerically with appropriate boundary conditions for various values of the dimensionless parameters. Comparison of the present numerical results are found to be in excellent with the earlier published results under limiting cases. The effects of various physical parameters on the boundary layer velocity, temperature and concentration profiles are discussed in detail for both the cases of assisting and opposing flows. The computed values of the skin friction coefficient, local Nusselt number and Sherwood number are discussed for various values of physical parameters. The tabulated results show that the effect of radiation is to increase skin friction coefficient, local Nusselt number and Sherwood number.  相似文献   

17.
The effect of MHD on the total heat transfer from a porous fin attached to a vertical isothermal surface has been investigated. The Maxwell equations have been used, and also Rosseland approximation for radiation heat transfer and Darcy model for simulating the flow in porous medium have been adapted. The governing equations are reduced to a nonlinear ODE. The fin is supposed to be an infinite fin, which is exposed to a magnetic field. The dimensionless temperature profile, and the average Nusselt number profiles have been obtained for different Rayleigh numbers and porosities. Validation is carried out by comparing the results obtained in this study with those predicted by Darcy–Brinkman–Forchheimer model.  相似文献   

18.
The effect of rotation and anisotropy on the onset of double diffusive convection in a horizontal porous layer is investigated using a linear theory and a weak nonlinear theory. The linear theory is based on the usual normal mode technique and the nonlinear theory on the truncated Fourier series analysis. Darcy model extended to include time derivative and Coriolis terms with anisotropic permeability is used to describe the flow through porous media. The effect of rotation, mechanical and thermal anisotropy parameters, and the Prandtl number on the stationary and overstable convection is discussed. It is found that the effect of mechanical anisotropy is to allow the onset of oscillatory convection instead of stationary. It is also found that the existence of overstable motions in case of rotating porous medium is not restricted to a particular range of Prandtl number as compared to the pure viscous fluid case. The finite amplitude analysis is performed to find the thermal and solute Nusselt numbers. The effect of various parameters on heat and mass transfer is also investigated.  相似文献   

19.
The effect of nonlinear mixed convection in stretched flows of rate-type non-Newtonian materials is described. The formulation is based upon the Maxwell liquid which elaborates thermal relation time characteristics. Nanofluid properties are studied considering thermophoresis and Brownian movement. Thermal radiation, double stratification, convective conditions, and heat generation are incorporated in energy and nanoparticle concentration expressions. A boundary-layer concept is implemented for the simplification of mathematical expressions. The modeled nonlinear problems are computed with an optimal homotopy scheme. Moreover, the Nusselt and Sherwood numbers as well as the velocity, nanoparticle concentration, and temperature are emphasized. The results show opposite impacts of the Deborah number and the porosity factor on the velocity distribution.  相似文献   

20.
The boundary layer flow of a Casson fluid due to a stretching cylinder is discussed in the presence of nanoparticles and thermal radiation. All physical properties of the Casson fluid except the thermal conductivity are taken constant. Appropriate transformations yield the nonlinear ordinary differential systems. Convergent series solutions are developed and analyzed. The numerical results for the local Nusselt and Sherwood numbers are demonstrated. It is found that an increase in the strength of the Brownian motion decays the temperature noticeably. However, the rate of heat transfer and the concentration of the nanoparticles at the surface increase for larger Brownian motion parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号