首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of tridentate Schiff bases with nickel and cadmium salts in methanol afforded two new mononuclear complexes, [Ni(L1)2] (I) and [Cd(L2)2] (II), where L1 and L2 are the anions of 2-bromo-4-chloro-6-[(3-dimethylaminopropylimino)methyl]phenol (HL1) and 2-bromo-4-chloro-6-[(3-morpholin-4-ylpropylimino)methyl]phenol (HL2), respectively. The complexes were characterized by singlecrystal X-ray diffraction (CIF files CCDC nos. 1428653 (I) and 1428654 for (II)), FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P2 1/c, with a = 8.8216(8), b = 14.0424(8), c = 11.8687(12) Å, β = 111.238(2)°, V = 1370.4(2) Å3, Z = 2. Complex II crystallizes in the monoclinic space group P2 1/n, with a = 9.6774(4), b = 15.8970(6), c = 20.3144(7) Å, β = 90.408(2)°, V = 3125.1(2) Å3, Z = 4. The metal atoms in the complexes are coordinated by two tridentate Schiff base ligands, forming octahedral coordination. The free Schiff bases and the complexes were assayed for antibacterial activities. Both complexes are more active against the bacteria than the free Schiff bases. Complex II has the MIC value of 0.39 μg mL–1 against Bacillus subtilis.  相似文献   

2.
3.
Two new mononuclear complexes, [NiL1] · CH3OH (I) and [NiL2] (II), have been prepared from the tetradentate Schiff bases N,N'-bis(5-methylsalicylidene)ethylenediamine (H2L1) and N,N'-bis(5-methylsalicylidene)- o-phenylenediamine (H2L2), respectively. The complexes have been characterized by physico-chemical and spectroscopic methods, as well as single-crystal X-ray determination (CIF files nos. 1428969 (I), 1428968 (II)). Complex I crystallizes in the triclinic space group P1 with a = 6.7387(14), b = 10.7010(17), c = 12.681(2) Å, α = 87.059(2)°, β = 88.828(2)°, γ = 89.901(2)°, V = 913.0(3) Å3, Z = 2. Complex II crystallizes in the monoclinic space group P21/n with a = 12.1437(11), b = 8.0537(8), c = 18.4545(18) Å, β = 105.088(2)°, V = 1742.7(3) Å3, Z = 4. The nickel atoms in the complexes are coordinated by two phenolate O and two imine N atoms of the tetradentate Schiff base ligands, forming square planar coordination. The complexes and the Schiff base compounds were assayed for antibacterial activities against three Gram-positive bacterial strains (B. subtilis, S. aureus, and St. faecalis) and three Gram-negative bacterial strains (E. coli, P. aeruginosa, and E. cloacae) by MTT method. As a result, the complexes showed effective antimicrobial activity against the microorganisms tested.  相似文献   

4.
Summary New neutral platinum complexes of Schiff bases or their hydrated derivatives were prepared and a new path to mixed ligand platinum(II) complexes is proposed. Reactions of [PtCl4]2– with multidentate Schiff bases give chelates which react further, resulting in cis-coordinated mixed N-donor ligand complexes. Structures are proposed on the basis of chemical analyses, electrical conductivities and i.r. studies.  相似文献   

5.
N-heterocyclic carbenes (NHCs) can be easily modified by introducing functional groups at the nitrogen atoms, which leads to versatile coordination chemistry as well as diverse catalytic applications of the resulting complexes. This article summarizes our contributions to the field of NHCs bearing different types of sulfur functions, i.e., thioether, sulfoxide, thiophene, and thiolato. The experimental evidence for the truly hemilabile coordination behavior of a Pd(II) thioether-NHC complex has been reported as well. In addition, complexes bearing rigid CSC-pincer ligands have been synthesized and the reasons for pincer versus pseudo-pincer formation investigated. Incorporation of the electron-rich thiolato function resulted in the isolation of structurally diverse complexes. The catalytic activities of selected complexes have been tested in Suzuki-Miyaura, Mizoroki-Heck and hydroamination reactions.  相似文献   

6.
Two new Schiff base ligands 2-chloro-N′-(5-fluoro-2-hydroxybenzylidene)benzohydrazide (H2La) and 4-fluoro-2-{[2-(2-hydroxyethylamino)ethylimino]methyl}phenol (HLb) were synthesized and characterized. Their respective oxidovanadium complexes, [VOLa(OMe)(MeOH)]·MeOH (1) and [VO(μ-O)Lb]2 (2), were synthesized and characterized by spectroscopy and single-crystal X-ray diffraction. The coordination sphere of each V atom is octahedral. Both complexes showed selective heterogeneous catalytic properties with 74–98 % conversion, for the oxidation of cyclohexene, cyclopentene, and benzyl alcohol using H2O2 as primary oxidant.  相似文献   

7.
New copper(II) complexes, [Cu2L1L2] · ClO4 (I) and [Ni(L3)2] (II), where L1 is the monoanionic form of 2-[1-(2-emthylaminoethylimino)ethyl]phenol, L2 is the dianionic form of N,N′-ethylene-bis(2-hydroxyacetophenonylideneimine), L3 is the mono-anionic form of 2-(1-iminoethyl)phenol, were prepared and characterized using elemental analysis, FT-IR spectroscopy, and X-ray single-crystal diffraction. In complex I, the Cu(1) atom is coordinated by the NNO tridentate ligand L1 and the two phenolate O atoms of L2, forming a square pyramidal geometry. The Cu(2) atom in complex I is coordinated by the NNOO tetradenate ligand L2, forming a square planar geometry. The Ni atom in complex II is coordinated by two phenolate O and two imine N atoms from two ligands L3, forming a square planar geometry. In the crystal structure of I, the perchlorate anions are linked to the dinuclear copper(II) complex cations through intermolecular N-H...O hydrogen bonds. In the crystal structure of II, the mononuclear nickel complex molecules are linked through intermolecular N-H...O hydrogen bonds, forming a trimer.  相似文献   

8.
Summary Schiff bases (HL) produced by the condensation ofN-methyl-S-methyldithiocarbazate with -diketones and aromatic aldehydes or ketones react with [RuHClCO(PPh3)3] to yield hexacoordinated complexes of the type [RuClCO(PPh3)2(L)]. These Schiff bases react with [RuCl2{P(OR)3}4] in 11 molar ratio to yield [RuCl{P(OR)3}2(L)] in which L is a tridentate. The chlorine atom in the complex can be removed in coordinating solvents in the presence of anions such as [BPh4] to give cationic complexes. Bis chelate complexes, [Ru{P(OR)3}2(L)2] are prepared from 12 molar proportions of the reactants. These complexes were characterised by elemental analyses, i.r.,1H n.m.r., u.v. and conductivity studies.NCL Communication No. 4224.  相似文献   

9.
Four ruthenium(II) p-cymene complexes with naphthalene-based Schiff base ligands [Ru(p-cymene)LCl] (2a2d) have been synthesized and characterized. The half-sandwich ruthenium complexes were characterized by 1H and 13C NMR spectra, elemental analyses, and infrared spectrometry. The molecular structures of 2a, 2b, and 2c were confirmed by single-crystal X-ray diffraction. Furthermore, these half-sandwich ruthenium complexes are highly active catalysts for the hydrogenation of nitroarenes to anilines using NaBH4 as the reducing agent in ethanol at room temperature.  相似文献   

10.
Mononuclear copper(II) Schiff base complexes, Cu(BrSal2Pn) (I) and Cu(BrSal2MePn) (II), where BrSal2Pn = N,N′-bis(5-bromo-2-hydroxybenzylidene)propane-1,3-diamine and BrSal2MePn = N,N′-bis(5-bromo-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine, have been synthesized and characterized by elemental analyses and single-crystal X-ray diffraction. Also, the optimized geometries of them have been calculated using density functional theory method (B3LYP/6–31g). Obtained structural parameters are in agreement with the experimental data. The geometry around the copper atoms display a distorted square-planner structure by coordinating with two oxygen atoms from the phenols moieties and two nitrogen atoms from the imino groups of ligands and thus established three 6-membered rings.  相似文献   

11.
Three new Pd(II) complexes of Schiff base ligands, namely, [Pd4(L1)4] (1), [Pd2(L2)2Cl2] (2) and [Pd(L3)2Cl2] (3) [HL 1 ?=?N-(benzylidene)-2-aminophenol; L 2 ?=?N-(2,4-dichlorobenzylidene)-2,6-diethylbenzenamine, L 3 ?=?4-(2,4-dichlorobenzylide-neamino)phenol] have been synthesized using solvothermal methods and characterized by elemental analysis, spectroscopy and single crystal X-ray diffraction. The crystal structures of the free ligands were also determined. The ??-oxygen-bridged tetranuclear cyclometallated Pd(II) complex (1) contains four nearly planar units, in which PdII is four-coordinate. Complex 2 is a ??-chloro-bridged dinuclear cyclometallated Pd(II) complex, whereas complex 3 is mononuclear. The Heck reactions of bromobenzene with acrylic acid catalyzed by complexes 1?C3 have also been studied.  相似文献   

12.
The Schiff base ligand (HL) obtained from phenylmethanamine and 5-methoxysalicylaldehyde are used as ligands for Co(II) and Ni(II) resulting in complexes [Co(L)2] (I) and [Ni(L)2] (II), and their solid state structures were determined by X-ray crystallography. In both complexes, weak interactions play an important role in the molecular self-assembly. Complex I was stacked up to the 2D layers by C-H…O hydrogen bonds and C-H…π interactions. In contrast, complex II was extended into 2D sheet by C-H…O hydrogen bonds, the C-H…π interactions, and edge-to-face interactions.  相似文献   

13.
14.
Three novel Schiff base Cd(II) trimeric complexes, [Cd3(L1)2(SCN)2(CF3COO)2] (1), [Cd3(L1)2(SCN)2(HCONMe2)] (2) and [Cd3(L2)2{N(CN)2}2] (3) have been prepared from two different symmetrical Schiff bases H2L1 and H2L2 (where H2L1 = N1,N3-bis(salicylideneimino)diethylenetriamine, a potentially pentadentate Schiff base with a N3O2 donor set, and H2L2 = N1,N3-bis(3-methoxysalicylideneimino)diethylenetriamine, a potentially heptadentate Schiff base with a N3O4 donor set). All the complexes have been synthesised under similar synthetic procedures and their crystal structures have been established by single crystal X-ray diffraction methods. The ligands and their metal complexes have been characterised by analytical and spectroscopic techniques. Among the three complexes, 1 and 3 are linear whereas 2 is a cyclic trimer. In 1 and 3, all the doubly phenoxo bridged Cd(II) metal centres are in a distorted octahedral environment. In complex 2, two of the three Cd(II) centres reside in a distorted octahedral environment and the remaining one enjoys a monocapped octahedral geometry. Altogether the variety in the bridging mode of two new salen-type ligands has been established through these complexes.  相似文献   

15.
Three unsymmetrical tetradentate Schiff base ligands, H2salipn, H2salipn-Br4 and H2salipn-Cl2, have been synthesized from the typical condensation reactions of treating 1,2-diaminopropane with salicylaldehyde, 3,5-dibromosalicylaldehyde and 5-chlorosalicylaldehyde, respectively. Treatment of [RuCl2(PPh3)3] with one equivalent of H2salipn or H2salipn-Br4 in the presence of triethylamine in tetrahydrofuran (THF) afforded the corresponding ruthenium(III) complexes [RuIIICl(PPh3)(salipn)] (1) and [RuIIICl(PPh3)(salipn-Br4)] (2). Interaction of [RuHCl(CO)(PPh3)3] with one equivalent of H2salipn-Cl2 or H2salipn-Br4 under the same conditions led to isolation of ruthenium(II) complexes [RuII(CO)(PPh3)(salalipn-Cl2)] (3) and [RuII(CO)(PPh3)(salalipn-Br4)] (4), respectively, in which one of the imine bonds was nucleophilically attacked by hydride to result in the formation of a mixed imine-amine ligand. The molecular structures of 1?1.5CH2Cl2, 2, 3?0.5CH2Cl2 and 4 have been determined by single-crystal X-ray crystallography. The electrochemical properties of 14 were also investigated. Their cyclic voltammograms displayed quasi-reversible Ru(IV)/Ru(III) and Ru(III)/Ru(II) couples with Eo ranging from 0.67 to 1.05 V and 0.74 to 0.80 V vs. Ag/AgCl (0.1 M), respectively.  相似文献   

16.
Two Pd(II) complexes involving Schiff base ligands, namely, [Pd(L1)2] (1), [Pd2(L2)Cl2] (2) [HL1 = 2-((2,6-diisopropylphenylimino)methyl)-4,6-dibromophenol, L2 = N-(4-isopropylbenzylidene)-2,6-diisopropylbenzenamine] have been synthesized using solvothermal methods and characterized by elemental analysis, IR-spectroscopy, thermogravimetric analysis, powder X-ray diffraction, UV–vis absorption spectra, and single-crystal X-ray diffraction. Complex 1 is a mononuclear cyclometalated Pd(II) complex, whereas complex 2 is a μ-chloro-bridged dinuclear. Both 1 and 2 display photoluminescence in the solid state at 298 K and possess fluorescence lifetimes (τ 1 = 86.40 ns, τ 2 = 196.21 ns, τ 3 = 1,923.31 ns at 768 nm for 1, τ 1 = 69.92 ns, τ 2 = 136.40 ns, τ 3 = 1,714.26 ns at 570 nm for 2). The Suzuki reactions of 4-bromotoluene with phenylboronic acid by complexes 12 have also been studied.  相似文献   

17.
A series of new diamagnetic ruthenium(II) complexes of the type [RuCl(CO)(B)(L)] (where B = PPh3, AsPh3 or Py; L = monobasic tridentate Schiff base ligands derived from o‐aminophenol or o‐aminothiophenol with ethylacetoacetate or ethylbenzoylacetate) have been synthesized and these complexes were characterized by physico‐chemical and spectroscopic methods. Cyclic voltammograms of all the complexes show quasi‐reversible oxidation in the range 0.24–1.05 V and the quasi‐reversible reduction in the range ? 0.14 to ? 0.51 V. The observed redox potentials show little variation with respect to the replacement of triphenyl phosphine/arsine by pyridine. The complexes were tested as catalysts in the oxidation of primary and secondary alcohols using molecular oxygen at room temperature and also in C? C coupling reactions. Further, the antibacterial properties of the free ligands and their metal complexes were evaluated against certain bacteria such as Escherichia coli and Staphylococcus aureus. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Three half-sandwich ruthenium(II) complexes with hydroxyl group functionalized Schiff-base ligands [Ru(p-cymene)LCl] ( 2a-2c ) have been synthesized and characterized. All ruthenium complexes were fully characterized by 1H and 13C NMR spectra, mass spectrometry and infrared spectrometry. The molecular structure of ruthenium complex 2c was confirmed by single-crystal X-ray diffraction methods. Furthermore, these half-sandwich ruthenium complexes were found to exhibit high catalytic activity for nitro compounds reduction using NaBH4 reducing agent in the presence of cetyltrimethylammonium bromide (CTAB) in water at room temperature.  相似文献   

19.
20.

Abstract  

Trans-CuL2 and cis-NiL2 (L = 1-((furan-2-yl)methylene)-4-phenylthiosemicarbazide) were synthesized and characterized by physico-chemical and spectroscopic methods. Their X-ray crystal structures were determined. The complexes contain the same bidentate Schiff base ligand, but with different cis-NiN2S2 and trans-CuN2S2 square-planar coordination geometries. Three-dimensional supramolecular networks were formed through “face to face” π–π conjugated systems between phenyl and furan rings. The interactions with yeast RNA (yRNA) were investigated by UV spectra and electrochemical methods, which showed that the complexes intercalated into yRNA. The bonding of trans-CuL2 to yRNA is the stronger of the two, suggesting that the trans geometry is more favorable for interaction with RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号