首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper an analysis of tendencies of Ge on Si quantum dots nanoheterostructures’ usage in different optoelectronic devices such as, for example, solar cells and photodetectors of visible and infra-red regions is carried out; a complex mathematical model for calculation of dependency on growth conditions of self-organized quantum dots of Ge on Si grown using the method of molecular beam epitaxy parameters is described. Ways of segregation effect and underlying layers’ influence are considered. It is shown that for realization of good device characteristics quantum dots should have high density, small sizes, uniformity, and narrow size distribution function. The desirable parameters of arrays of square and rectangular quantum dots for device application are attainable under certain growth conditions.  相似文献   

2.
Ge/Si superlattices containing Ge quantum dots were prepared by molecular beam epitaxy and studied by resonant Raman scattering. It is shown that these structures possess vibrational properties of both two-and zero-dimensional objects. The folded acoustic phonons observed in the low-frequency region of the spectrum (up to 15th order) are typical for planar superlattices. The acoustic phonon lines overlap with a broad emission continuum that is due to the violation of the wave-vector conservation law by the quantum dots. An analysis of the Ge and Ge-Si optical phonons indicates that the Ge quantum dots are pseudoamorphous and that mixing of the Ge and Si atoms is insignificant. The longitudinal optical phonons undergo a low-frequency shift upon increasing laser excitation energy (2.54–2.71 eV) because of the confinement effect in small-sized quantum dots, which dominate resonant Raman scattering.  相似文献   

3.
The spectra of Raman scattering by folded acoustic phonons in Si/Ge superlattices with pseudomorphic layers of Ge quantum dots (QDs) grown by low-temperature (T = 250°C) molecular beam epitaxy are studied. New features of the folded phonon lines related to the resonant enhancement and unusual intensity ratio of the doublet lines that cannot be explained by the existing theory have been observed. The observed modes are shown to be related to the vibrations localized to the QDs and induced by the folded phonons of the Si spacer layers. The calculations performed in the model of a one-dimensional chain of atoms have allowed the nature of the localization of acoustic phonons attributable to a modification of the phonon spectrum of a thin QD layer to be explained. The observed intensity ratio of the folded phonon doublet lines is caused by asymmetry of the relief of the QD layers.  相似文献   

4.
The spatial structure of excitons and the oscillator strength characterizing the intensity of interband optical transitions in vertically coupled Ge/Si quantum dots have been theoretically studied. It has been found that the probability of the exciton transition under certain conditions (the sizes of the quantum dots, the separation of the dots) can be much larger (up to a factor of 5) than the value for the case of single quantum dots. It is expected that the results will make it possible to approach the creation of efficient light-emitting and photoreceiving devices based on Si and Ge indirect-band semiconductors.  相似文献   

5.
We present a photoluminescence (PL) study of Ge quantum dots embedded in Si. Two different types of recombination processes related to the Ge quantum dots are observed in temperature-dependent PL measurements. The Ge dot-related luminescence peak near 0.80 eV is ascribed to the spatially indirect recombination in the type-II band lineup, while a high-energy peak near 0.85 eV has its origin in the spatially direct recombination. A transition from the spatially indirect to the spatially direct recombination is observed as the temperature is increased. The PL dependence of the excitation power shows an upshift of the Ge quantum dot emission energy with increasing excitation power density. The blueshift is ascribed to band bending at the type-II Si/Ge interface at high carrier densities. Comparison is made with results derived from measurements on uncapped samples. For these uncapped samples, no energy shifts due to excitation power or temperatures are observed in contrast to the capped samples.  相似文献   

6.
The conductance along an island layer of Ge quantum dots buried in silicon was investigated. The sizes of the islands varied in the range D ≈ 12−19 nm. It was found that the charge transport is characterized by two activation energies. The first one is associated with the thermal emission of holes from Ge quantum wells into the valence band of Si. The second one is due to the tunneling of holes between islands under Coulomb blockade conditions and is determined by the electrostatic charging energy of a quantum dot. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 6, 423–426 (25 March 1996)  相似文献   

7.
Structures with self-assembled Ge/Si quantum dots grown by molecular-beam epitaxy are exposed to pulsed radiation of a picosecond laser. Changes in the vibrational spectrum of nanostructures under an external action are studied by Raman spectroscopy. An analysis of the Raman spectra measured with a micron spatial resolution along the exposed region indicates a mixing of Ge and Si atoms and a change in the induced mechanical stresses in quantum dots.  相似文献   

8.
The lateral photoconductivity spectra of Si/Ge multilayer structures with Ge quantum dots of various sizes are investigated. We observed optical transition lines between the hole levels of quantum dots and electronic states of Si. This enabled us to construct a detailed energy level diagram of the electron-hole spectrum of the Si/Ge structures. It is shown that the hole levels of Ge quantum dots are successfully described by the “quantum box” model using the actual sizes of Ge islands. It I found that the position of the longwavelength photosensitivity boundary of Si/Ge structures with Ge quantum dots can be controlled by changing the growth parameters.  相似文献   

9.
The tight binding approximation is employed to study the Zeeman effect for the hole ground state in a quantum dot. A method is proposed for calculating the g factor for localized states in a quantum dot. This method can be used both for hole states and for electron states. Calculations made for a Ge/Si system with quantum dots show that the g factor of a hole in the ground state is strongly anisotropic. The dependence of the g factor on the size of a germanium island is analyzed and it is shown that anisotropy of the g factor increases with the island size. It is shown that the value of the g factor is mainly determined by the contribution of the state with the angular momentum component J z =±3/2 along the symmetry axis of the germanium island.  相似文献   

10.
The results of calculations of optical absorption spectra of silicon containing Ge nanoclusters of spherical shape and different size are reported. The optical transitions from the Ge cluster levels to the silicon bulk energy band states are analyzed.  相似文献   

11.
We study the effect of quantum dot size on the mid-infrared photocurrent, photoconductive gain, and hole capture probability in ten-period p-type Ge/Si quantum dot heterostructures. The dot dimensions are varied by changing the Ge coverage during molecular beam epitaxy of Ge/Si(001) system in the Stranski–Krastanov growth mode while keeping the deposition temperature to be the same. A device with smaller dots is found to exhibit a lower capture probability and a higher photoconductive gain and photoresponse. The integrated responsivity in the mid-wave atmospheric window (λ = (3–5) μm) is improved by a factor of about 8 when the average in-plane dot dimension changes from 18 to 11 nm. The decrease in the dot size is expected to reduce the carrier relaxation rate due to phonon bottleneck by providing strong zero-dimensional quantum mechanical confinement.  相似文献   

12.
A method is developed for calculating the elastic deformation in coherently strained heterostructures on the basis of the valence force field (VFF) model using the Green’s function of the “atomistic” elastic problem. The spatial distribution of the elastic deformations in a Ge/Si system with pyramidal Ge quantum dots buried in a Si matrix is investigated theoretically. The deformation distribution in and around the pyramids is determined. Near quantum dots, the region near the tip of the pyramid is most strongly intensely. Inside quantum dots the region of the vertex is most relaxed, and the most strained section lies on the contour of the pyramid base. Compression occurs in the plane of the pyramid base inside quantum dots, and stretching occurs along the vertical direction. The picture is reversed near quantum dots: stretching occurs in the lateral direction and compression in the vertical direction. It is shown that the local deformations and their spatial distribution are essentially independent (to within the scaling) of the size of the quantum dots for 10–15 nm pyramid bases.  相似文献   

13.
Electric field-induced splitting of the lines of exciton optical transitions into two peaks is observed for Ge/Si structures with quantum dots (QDs). With increasing field, one of the peaks is displaced to higher optical transition energies (blue shift), whereas the other peack is shifted to lower energies (red shift). The results are explained in terms of the formation of electron-hole dipoles of two types differing in the direction of the dipole moment; these dipoles arise due to the localization of one electron at the apex of the Ge pyramid and of the other electron under the base of the pyramid. By using the tight-binding method, the principal values of the g factor for the hole states in Ge/Si quantum dots are determined. It is shown that the g factor is strongly anisotropic, with the anisotropy becoming smaller with decreasing QD size. The physical reason for the dependence of the g factor on quantum-dot size is the fact that the contributions from the states with different angular-momentum projections to the total wave function change with the QD size. Calculations show that, with decreasing QD size, the contribution from heavy-hole states with the angular-momentum projections ±3/2 decreases, while the contributions from light-hole states and from states of the spin-split-off band with the angular-momentum projections ±1/2 increase.  相似文献   

14.
We investigate tunable hole quantum dots defined by surface gating Ge/Si core-shell nanowire heterostructures. In single level Coulomb-blockade transport measurements at low temperatures spin doublets are found, which become sequentially filled by holes. Magnetotransport measurements allow us to extract a g factor g approximately 2 close to the value of a free spin-1/2 particle in the case of the smallest dot. In less confined quantum dots smaller g factor values are observed. This indicates a lifting of the expected strong spin-orbit interaction effects in the valence band for holes confined in small enough quantum dots. By comparing the excitation spectrum with the addition spectrum we tentatively identify a hole exchange interaction strength chi approximately 130 microeV.  相似文献   

15.
A nonmonotonic dependence of the lateral photoconductivity (PC) on the interband light intensity is observed in Si/Ge/Si and Si/Ge/SiOx structures with self-organized germanium quantum dots (QDs): in addition to a stepped increase in PC, a stepped decrease in PC is also observed. The effect of temperature and drive field on these features of the PC for both types of structures with a maximum nominal thickness of the Ge layer (NGe) is studied. The results obtained are discussed in the context of percolation theory for nonequilibrium carriers localized in different regions of the structure: electrons in the silicon matrix and holes in QDs.  相似文献   

16.
The effects of thermal annealing in Si base self-assembled Ge dots have been investigated by Raman spectra and PL spectra. An obvious Raman frequency shift under different annealing temperature can be observed. There are two main effects during the annealing procession: one is the inter-diffusion of the Si and Ge quantum dots; the other is the relaxation of the elastic strain. With the calculated results, PL blue shift can be related to strain relaxation effects, and/or a general decrease of Ge content due to the Ge-Si intermixing.  相似文献   

17.
离子束溅射自组装Ge/Si量子点生长的演变   总被引:2,自引:0,他引:2       下载免费PDF全文
张学贵  王茺  鲁植全  杨杰  李亮  杨宇 《物理学报》2011,60(9):96101-096101
采用离子束溅射技术,通过改变Ge的沉积量,在n型Si(100)衬底上自组装生长了一系列Ge量子点样品. 利用AFM和Raman光谱对样品表面形貌和结构进行表征,系统地研究了Ge量子点形貌、密度、尺寸大小以及Ge的结晶性和量子点中组分等随Ge沉积量的演变规律. 结果表明:Ge层从二维薄层向三维岛过渡过程中,没有观察到传统的由金字塔形向圆顶形量子点过渡,而是直接呈圆顶形生长;且随着Ge沉积量的增加,量子点密度先增大后减小,Ge的结晶性增强同时Ge/Si互混加剧,量子点中Si的组分增加. 关键词: 离子束溅射 量子点 表面形貌 Raman光谱  相似文献   

18.
The emission of holes from the bonding state of diatomic artificial molecules formed by vertically coupled Ge/Si(001) quantum dots is studied by the admittance spectroscopy method. It is found that, when the thickness of the Si barrier between Ge quantum dots exceeds 2.5 nm, the binding energy of a hole in an artificial molecule becomes smaller than the ionization energy of a single quantum dot. This result contradicts the predictions of the quantum-mechanical model of molecular bonds and testifies to the crucial role of mechanical stresses in the formation of the bonding orbital in a system of elastically stressed quantum dots.  相似文献   

19.
Theoretical investigations of the electronic structure of elastically stressed double Ge quantum dots in Si performed in the six-band kp approximation with the Bir-Pikus Hamiltonian and with the configuration interaction method are reviewed. The existence of the antibonding ground state of holes has been revealed. It has been found that, when quantum dots approach each other, the exchange energy of two-particle states has a minimum at the point of the intersection of bonding and antibonding levels; the singlet and triplet states at this point are degenerate. For the lowest spin singlet, it has been revealed that Coulomb correlations in the motion of two holes are manifested in the localization of the two-particle wavefunction at opposite quantum dots when the distance between the dots increases. It has been shown that the degree of entanglement of the singlet quantum states reaches 50% in the case of the manifestation of such spatial correlations.  相似文献   

20.
Spectra of the photocurrent of holes in δ-doped Si layers with Ge quantum dots in weak external electric fields have been studied. It has been established that the photocurrent of the holes in the photovoltaic mode changes its sign with the increase in the impurity concentration in the δ layers. It has been found that there is a voltage range in the vicinity of the zero bias in which the direction of the photocurrent is determined by the wavelength of the exciting radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号