首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper is concerned with a formulation of anisotropic finite strain inelasticity based on the multiplicative decomposition of the deformation gradient F=FeFp. A major feature of the theory is its invariance with respect to rotations superimposed on the inelastic part of the deformation gradient. The paper motivates and shows how such an invariance can be achieved. At the heart of the formulation is the mixed-variant transformation of the structural tensor, defined as the tensor product of the privileged directions of the material as given in a reference configuration, under the action of Fp. Issues related to the plastic material spin are discussed in detail. It is shown that, in contrast to the isotropic case, any flow function formulated purely in terms of stress quantities, necessarily exhibits a non-vanishing plastic material spin. The possible construction of spin-free rates is discussed as well, where it is shown that the flow rule must then depend not only on the stress but on the strain as well.  相似文献   

2.
The drawing or rolling process endows polycrystal shape memory alloy with a crys- tallographic texture, which can result in macroscopic anisotropy. The main purpose of this work is to develop a constitutive model to predict the thermomechanical behavior of shape memory alloy sheets, which accounts for the crystallographic texture. The total macroscopic strain is decom- posed into elastic strain and macro-transformation strain under isothermal condition. Considering the transformation strain in local grains and the orientation distribution function of crystallo- graphic texture, the macro-transformation strain and the effective elastic modulus of textured polycrystal shape memory alloy are developed by using tensor expressions. The kinetic equation is established to calculate the volume fraction of the martensite transformation under given stress. Furthermore, the Hill's quadratic model is developed for anisotropic transformation hardening of textured SMA sheets. All the calculation results are in good agreement with experimental data, which show that the present model can accurately describe the macro-anisotropic behaviors of textured shape memory alloy sheets.  相似文献   

3.
An improved model of material behavior is proposed that shows good agreement with experimental data for both yield and plastic strain ratios in uniaxial, equi-biaxial, and plane-strain tension under proportional loading for steel, aluminum and possibly other alloys. This model is based on a non-associated flow rule in which the plastic potential and yield surface functions are defined by quadratic functions of the stress tensor. The plastic potential aspect of the model is identical to that proposed by Hill for a quadratic anisotropic plastic potential defined in terms of measured r values. The new model differs in that the yield surface, although also defined by a quadratic function of the stress tensor, is defined independently of the plastic potential in terms of measured yield stresses. The model is developed and implemented in an FEM code that is based on a convected coordinate system. Since the associated flow rule, which assumes equivalency between the plastic potential and yield functions, is commonly accepted as a valid law in the theory of plastic deformation of most metals, the arguments for the associated flow rule are also discussed.  相似文献   

4.
An approximate macroscopic yield criterion for anisotropic porous sheet metals is adopted to develop a failure prediction methodology that can be used to investigate the failure of sheet metals under forming operations. Hill's quadratic anisotropic yield criterion is used to describe the matrix normal anisotropy and planar isotropy. The approximate macroscopic anisotropic yield criterion is a function of the anisotropy parameter R, defined as the ratio of the transverse plastic strain rate to the through-thickness plastic strain rate under in-plane uniaxial loading conditions. The Marciniak–Kuczynski approach is employed here to predict failure/plastic localization by assuming a slightly higher void volume fraction inside randomly oriented imperfection bands in a material element of interest. The effects of the anisotropy parameter R, the material/geometric inhomogeneities, and the potential surface curvature on failure/plastic localization are first investigated. Then, a non-proportional deformation history including relative rotation of principal stretch directions is identified in a critical element of a mild steel sheet under a fender forming operation given as a benchmark problem in the 1993 NUMISHEET conference. Based on the failure prediction methodology, the failure of the critical sheet element is investigated under the non-proportional deformation history. The results show that the gradual rotation of principal stretch directions lowers the failure strains of the critical element under the given non-proportional deformation history.  相似文献   

5.
6.
7.
A framework for the calculation of thermally-induced plane waves in elastic-plastic single crystals of arbitrary crystallographic symmetry and orientation is presented. Plasticity is described in terms of small strain theory and the available slip-planes which can be arbitrary in number as well as in orientation. The effects of perfect-plasticity modify not only the anisotropic elastic moduli, but also the components of the Grüneisen tensor. The latter effect is a consequence of a non-spherical stress state developed in anisotropic materials during rapid energy-absorption at constant strain. Specific examples of thermally-induced plane waves are presented for both the elastic and plastic response of beryllium and graphite single-crystals.  相似文献   

8.
The influence of strain hardening exponent on two-parameter J-Q near tip opening stress field characterization with modified boundary layer formulation and the corresponding validity limits are explored in detail. Finite element simulations of surface cracked plates under uniaxial tension are implemented for loads exceeding net-section yield. The results from this study provide numerical methodology for limit analysis and demonstrate the strong material dependencies of fracture parameterization under large scale yielding. Sufficient strain hardening is shown to be necessary to maintain J-Q predicted fields when plastic flow progresses through the remaining ligament. Lower strain hardening amplifies constraint loss due to stress redistribution in the plastic zone and increases the ratio of tip deformation to J. The onset of plastic collapse is marked by shape change and/or rapid relaxation of tip fields compared to those predicted by MBL solutions and thus defining the limits of J-Q dominance. A radially independent Q-parameter cannot be evaluated for the low strain hardening material at larger deformations within a range where both cleavage and ductile fracture mechanisms are present. The geometric deformation limit of near tip stress field characterization is shown to be directly proportional to the level of stress the material is capable of carrying within the plastic zone. Accounting for the strain hardening of a material provides a more adjusted and less conservative limit methodology compared to those generalized by the yield strength alone. Results from this study are of relevance to establishing testing standards for surface cracked tensile geometries.  相似文献   

9.
Taylor impact tests using specimens cut from a rolled plate of tantalum were conducted. The tantalum was experimentally characterized in terms of flow stress and crystallographic texture. A piece-wise yield surface was interrogated from an ODF corresponding to this texture assuming two slip system modes, in conjunction with an elastic stiffness tensor computed from the same ODF and single crystal elastic properties. This constitutive information was used in EPIC-95 3D simulations of a Taylor impact test, and good agreement was realized between the calculational results and the experimental post-test geometries in terms of major and minor side profiles and impact-interface footprints.  相似文献   

10.
A slip line theory governing states of incipient plane flow at the yield point load is developed for anisotropic rigid/plastic materials which exhibit a reduced yield criterion, governing states of plane flow, that depends only on the deviatoric parts of the in-plane stress tensor. It is shown that every homogeneous, incompressible material which complies with the principle of maximum plastic work, but which is of otherwise arbitrary anisotropy, is of this class. The stress equilibrium requirements are seen to take a remarkably simple form expressing the constancy of the quantities mean in-plane normal stress plus or minus arc length around the governing yield contour in a Mohr stress plane along members of the two slip line families. Further, this generalization of the Hencky equations is valid for every material of the considered class. Some special features of yield contours containing corners and flat segments are discussed, and velocity equations are given for materials complying with the maximum work inequality. The theory is applied to obtain the solution for indentation of an arbitrarily anisotropic half-space with a flat-ended, rigid, frictionless punch. A simple, universal formula, involving only geometrical dimensions of the governing yield contour, is derived for the yield point indentation pressure.  相似文献   

11.
The dependence of the fracture toughness K 1C of rolled ageing alloys with structural and crystallographic textures on the loading direction is established. A formula describing the anisotropy of the K 1C and including structural parameters of structurally textured alloys on planes of growth of mode I cracks is derived and validated for aluminum alloys. The influence of crystallographic planes and crack growth direction on K 1C is analyzed for titanium alloy as a rolled material with crystallographic texture  相似文献   

12.
This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill’s yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic–plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic–plastic constitutive model is the introduction of anisotropic effect in the Mie–Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM’s version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie–Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \({\varvec{\psi }}\) tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic–plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and \({\mathrm {895\,ms}}^{\mathrm {-1}}\) impact velocities is performed. A good agreement is obtained in each test.  相似文献   

13.
14.
Summary A yield criterion for elastic pure-plastic polycrystalline materials is generated under simplified conditions by assuming that for yielding a certain fraction Q c of the total number of slip planes in the material has to be active. This fraction Q c is called the critical active quantity. We suppose Q c to be independent of the state of stress. The yield criterion is mathematically expressed as an integral, which is a function of Q c. This criterion can also be used for anisotropic materials.For isotropic materials the ratio (r) of the yield stress in torsion to that in tension is calculated as a function of Q c. We find 0.5r0.61.The value r=0.5 (Tresca's criterion) is obtained for Q c=0 and Q c=1. The value r=0.577 (von Mises criterion) is obtained for Q c=0.34 and Q c=0.79. The difference between two criteria with the same r is the magnitude of the yield stress. We think the value Q c=0.79 corresponds to the experiments for f.c.c. materials, since a rough estimation gives Q c>0.75 for yielding.The independence of Q c on the state of stress brings on that r>0.5 is more probable. This is caused by the slower increase to Q c in torsion compared with the case of tension.From the theory follows that in the general case (Q c0) the middle principal stress has influence on yielding.In this paper we don't determine Q c, but adapt its value to the experimental results. However, a rough estimation of Q c is given for isotropic materials.  相似文献   

15.
The model in the first part of this paper is extended to account for SMA behavior under cyclic loading. To this end, three new state variables are introduced: internal stress B, residual strain ?r and cumulated martensite volume fraction ze. Several parameters of the extended model depend on ze, making them evolve with cyclic phase change. Cyclic SMA effects including training and two-way shape memory are accounted for and several numerical simulations are provided and validated in the case of cyclic superelasticity.  相似文献   

16.
This work extends previous efforts in plate bending of Virtual Fields Method (VFM) parameter identification to include a general 2-D anisotropic material. Such an extension was needed for instances in which material principal directions are unknown or when specimen orientation is not aligned with material principal directions. A new fixture with a multi-axial force configuration is introduced to provide full-field strain data for identification of the six anisotropic stiffnesses. Two paper materials were tested and their Q ij compared favorably with those determined by ultrasonic and tensile tests. Accuracy of VFM identification was also quantified by variance of stiffnesses. The load fixture and VFM provide an alternative stiffness identification tool for a wide variety of thin materials to more accurately determine Q 12 and Q 66.  相似文献   

17.
An analytical representation of the yield loci of single crystals obeying the Schmid law is examined. It involves an exponent n. The study is conducted first in the fcc case, but it can be extended to more complex modes of slip. A method of predicting the plastic behaviour of polycrystals from the knowledge of their texture is then derived. It leads to completely analytical formulae and is compatible with the assumption of uniform stress. In case n = 2, it is equivalent to Hill's 1948 yield criterion but experiments show that the values of the best-fitting n are higher than 2. These larger values account for phenomena which cannot be predicted by the quadratic criterion, such as ‘anomalous behaviour’. Further reflection leads us to propose an alternative method of averaging, characterized by the introduction of a second exponent m. The effect of m is to realize a fair balance between the contributions of the various crystallographic components to the global mechanical behaviour. The comparison with experimental data from two aluminium sheets shows that it leads to an improvement in the predictions of the values of the strain rate ratio.  相似文献   

18.
When texture is incorporated in the finite element simulation of a metal forming process, much computer time can be saved by replacing continuous texture and corresponding yield locus updates by intermittent updates after strain intervals of e.g. 20%. The hypothesis that the evolution of the anisotropic properties of a polycrystalline material during such finite interval of plastic deformation can be modelled by just rotating the initial texture instead of continuously updating it by means of a polycrystal deformation model is tested in this work. Two spins for rotating the frame have been assessed: the classical rigid body spin and a crystal plasticity based “Mandel spin” (calculated from the rotated initial texture) which is the average of the spins of all the crystal lattices of the polycrystal. Each of these methods was used to study the evolution of the yield locus and the r-value distribution during the 20% strain interval. The results were compared to those obtained by simulating the texture evolution continuously using a polycrystal deformation model. When the texture was not updated during deformation, it was found that for most initial textures the Mandel spin does not perform better than the rigid body spin, except for some special initial textures for which the Mandel spin is much better. The latter ones are textures which are almost stable for the corresponding strain mode. When the texture was updated after each strain interval of e.g. 20% the Mandel spin performed much better than the rigid body spin.  相似文献   

19.
An anisotropic yield criterion for polycrystalline metals which uses texture data and takes advantage of crystal symmetries is presented. A linear transformation is developed to map an anisotropic yield surface for a polycrystal to an appropriate isotropic yield surface. The transformation developed reflects the symmetry of the material being modeled. First, the transformation is determined. Then, information regarding the orientation distribution (texture) of the crystals in a polycrystalline aggregate is used to determine, via averaging, the transformation for the polycrystal. The transformation, along with appropriate isotropic yield surface, provides a phenomenological approach to modeling yield, yet accounts for microstructural texture. The approach reduces to the Hill (1950) anisotropic plasticity theory under certain conditions. The yield surfaces and R-values for various face-centered-cubic ( fcc) polycrystalline textures are computed by this method. Results compare favorably with those given by other theories, and with experiment. The method proves to have the computational efficiency of phenomenological approaches to modeling yield, while effectively incorporating the physics of more complex crystallographic approaches.  相似文献   

20.
Steady state crack propagation problems of elastic-plastic materials in Mode I, plane strain under small scale yielding conditions were investigated with the aid of the finite element method. The elastic-perfectly plastic solution shows that elastic unloading wedges subtended by the crack tip in the plastic wake region do exist and that the stress state around the crack tip is similar to the modified Prandtl fan solution. To demonstrate the effects of a vertex on the yield surface, the small strain version of a phenomenological J2, corner theory of plasticity (Christoffersen, J. and Hutchinson, J. W. J. Mech. Phys. Solids,27, 465 C 1979) with a power law stress strain relation was used to govern the strain hardening of the material. The results are compared with the conventional J2 incremental plasticity solution. To take account of Bauschinger like effects caused by the stress history near the crack tip, a simple kinematic hardening rule with a bilinear stress strain relation was also studied. The results are again compared with the smooth yield surface isotropic hardening solution for the same stress strain curve. There appears to be more potential for steady state crack growth in the conventional J2 incremental plasticity material than in the other two plasticity laws considered here if a crack opening displacement fracture criterion is used. However, a fracture criterion dependent on both stress and strain could lead to a contrary prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号