首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In present work, we investigated the feasibility of universal calibration models for moisture content determination of a much complicated products system of powder injections to simulate the process of building universal models for drug preparations with same INN (International Nonproprietary Name) from diverse formulations and sources. We also extended the applicability of universal model by model updating and calibration transfer. Firstly, a moisture content quantitative model for ceftriaxone sodium for injection was developed, the results show that calibration model established for products of some manufacturers is also available for the products of others. Then, we further constructed a multiplex calibration model for seven cephalosporins for injection ranging from 0.40 to 9.90%, yielding RMSECV and RMSEP of 0.283 and 0.261, respectively. However, this multiplex model could not predict samples of another cephalosporin (ceftezole sodium) and one penicillins (penicillin G procaine) for injection accurately. With regard to such limits and the extension of universal models, two solutions are proposed: model updating (MU) and calibration transfer. Overall, model updating is a robust method for the analytical problem under consideration. When timely model updating is impractical, piecewise direct standardization (PDS) algorithm is more desirable and applied to transfer calibration model between different powder injections. Both two solutions have proven to be effective to extend the applicability of original universal models for the new products emerging.  相似文献   

2.
Piecewise direct standardization (PDS) is applied to multivariate standardization of fluorescence signals using partial least squares (PLS) and principal component regression (PCR) as the calibration models. The multivariate standardization was used to transfer spectra obtained after a step of solid phase extraction (SPE) to spectra registered in pure solvent in the determination of carbendazim, fuberidazole and thiabendazole in water samples. The influential parameters, such as tolerance, window size and the number of samples of the standardization subset were optimized by means of the root mean squared error of prediction (RMSEP). Similar RMSEP values were obtained by PLS and PCR using the optimized influential parameters in the standardization. However, better predictions of the compounds were obtained in test set by the PLS model.  相似文献   

3.
This work describes a hybrid procedure for eliminating major interference sources in aqueous near-infrared (NIR) spectra, that include aqueous influence, noise, and systemic variations irrelevant to concentration. The scheme consists of two parts: extension of wavelet prism (WPe) and orthogonal signal correction (OSC). First, WPe is employed to remove variations due to aqueous absorbance and noise; then OSC is applied to remove systemic spectral variations irrelevant to concentration. Although water possesses strong absorption bands that overshadow and overlap the absorption bands of analytes, along with noise and systematic interference, successful calibration models can be generated by employing the method proposed here. We show that the elimination of major interference sources from the aqueous NIR spectra results in a substantial improvement in the precision of prediction, and reduces the required number of PLS components in the model. In addition, the strategy proposed here can be applied to various analytical data for quantitative purposes as well.  相似文献   

4.
Orthogonal WAVElet correction (OWAVEC) is a pre-processing method aimed at simultaneously accomplishing two essential needs in multivariate calibration, signal correction and data compression, by combining the application of an orthogonal signal correction algorithm to remove information unrelated to a certain response with the great potential that wavelet analysis has shown for signal processing. In the previous version of the OWAVEC method, once the wavelet coefficients matrix had been computed from NIR spectra and deflated from irrelevant information in the orthogonalization step, effective data compression was achieved by selecting those largest correlation/variance wavelet coefficients serving as the basis for the development of a reliable regression model. This paper presents an evolution of the OWAVEC method, maintaining the first two stages in its application procedure (wavelet signal decomposition and direct orthogonalization) intact but incorporating genetic algorithms as a wavelet coefficients selection method to perform data compression and to improve the quality of the regression models developed later. Several specific applications dealing with diverse NIR regression problems are analyzed to evaluate the actual performance of the new OWAVEC method. Results provided by OWAVEC are also compared with those obtained with original data and with other orthogonal signal correction methods.  相似文献   

5.
This paper proposes a new method for calibration transfer, which was specifically designed to work with isolated variables, rather than the full spectrum or spectral windows. For this purpose, a univariate procedure is initially employed to correct the spectral measurements of the secondary instrument, given a set of transfer samples. A robust regression technique is then used to obtain a model with low sensitivity with respect to the univariate correction residuals. The proposed method is employed in two case studies involving near infrared spectrometric determination of specific mass, research octane number and naphthenes in gasoline, and moisture and oil in corn. In both cases, better calibration transfer results were obtained in comparison with piecewise direct standardization (PDS). The proposed method should be of a particular value for use with application-targeted instruments that monitor only a small set of spectral variables.  相似文献   

6.
《Analytica chimica acta》2004,509(2):217-227
In near-infrared (NIR) measurements, some physical features of the sample can be responsible for effects like light scattering, which lead to systematic variations unrelated to the studied responses. These errors can disturb the robustness and reliability of multivariate calibration models. Several mathematical treatments are usually applied to remove systematic noise in data, being the most common derivation, standard normal variate (SNV) and multiplicative scatter correction (MSC). New mathematical treatments, such as orthogonal signal correction (OSC) and direct orthogonal signal correction (DOSC), have been developed to minimize the variability unrelated to the response in spectral data. In this work, these two new pre-processing methods were applied to a set of roasted coffee NIR spectra. A separate calibration model was developed to quantify the ash content and lipids in roasted coffee samples by PLS regression. The results provided by these correction methods were compared to those obtained with the original data and the data corrected by derivation, SNV and MSC. For both responses, OSC and DOSC treatments gave PLS calibration models with improved prediction abilities (4.9 and 3.3% RMSEP with corrected data versus 7.1 and 8.3% RMSEP with original data, respectively).  相似文献   

7.
In this work, multivariable calibration models based on middle- and near-infrared spectroscopy were developed in order to determine the content of biodiesel in diesel fuel blends, considering the presence of raw vegetable oil. Soybean, castor and used frying oils and their corresponding esters were used to prepare the blends with conventional diesel. Results indicated that partial least squares (PLS) models based on MID or NIR infrared spectra were proven suitable as practical analytical methods for predicting biodiesel content in conventional diesel blends in the volume fraction range from 0% to 5%. PLS models were validated by independent prediction set and the RMSEPs were estimated as 0.25 and 0.18 (%, v/v). Linear correlations were observed for predicted vs. observed values plots with correlation coefficient (R) of 0.986 and 0.994 for the MID and NIR models, respectively. Additionally, principal component analysis (PCA) in the MID region 1700 to 1800 cm− 1 was suitable for identifying raw vegetable oil contaminations and illegal blends of petrodiesel containing the raw vegetable oil instead of ester.  相似文献   

8.
In an spectroscopic context, when a calibration model based on partial least squares is developed to predict a response, it is often the case that a high percentage of variation in the data explained by the first latent variable is not accompanied by an equally high percentage of variation in the studied response. The addition of more components can slowly improve the calibration model, but with negative effects on the robustness and interpretability of the final model. To solve this problem, several pre-processing methods have been proposed to remove only a portion unrelated to the studied response from the spectral matrix.Moreover, the need for efficient compression methods is increasingly important due to the large size of the data currently collected. In this sense, discrete wavelet transform has proven that it can achieve good compression without losing relevant information when used on individual signals.This paper introduces a new pre-processing method, orthogonal wavelet correction (OWAVEC) that tries to lump together two important needs in multivariate calibration: signal correction and compression. The new method has been tested on a set of diesel fuels using viscosity as variable response, and its results have been compared not only with those obtained from original data but also with those provided by other correction methods. The first practical results are encouraging, as the method generates considerably better calibration models compared to the model developed from raw data and provides results as least so good as other orthogonal correction methods.  相似文献   

9.
A principal component regression (PCR) model is built for prediction of total antioxidant capacity in green tea using near-infrared (NIR) spectroscopy. The modelling procedures are systematically studied with the focus on outlier detection. Different outlier detection methods are used and compared. The root mean square error of prediction (RMSEP) of the final model is comparable to the precision of the reference method.  相似文献   

10.
In this paper, multivariate calibration of complicated process fluorescence data is presented. Two data sets related to the production of white sugar are investigated. The first data set comprises 106 observations and 571 spectral variables, and the second data set 268 observations and 3997 spectral variables. In both applications, a single response, ash content, is modelled and predicted as a function of the spectral variables. Both data sets contain certain features making multivariate calibration efforts non-trivial. The objective is to show how principal component analysis (PCA) and partial least squares (PLS) regression can be used to overview the data sets and to establish predictively sound regression models. It is shown how a recently developed technique for signal filtering, orthogonal signal correction (OSC), can be applied in multivariate calibration to enhance predictive power. In addition, signal compression is tested on the larger data set using wavelet analysis. It is demonstrated that a compression down to 4% of the original matrix size — in the variable direction — is possible without loss of predictive power. It is concluded that the combination of OSC for pre-processing and wavelet analysis for compression of spectral data is promising for future use.  相似文献   

11.
Near infrared spectroscopy (NIRS) was used in combination with partial least squares (PLS) calibration to determine low concentrated analytes. The effect of the orthogonal signal correction (OSC) and net analyte signal (NAS) pretreatments on the models obtained at concentrations of analyte near its detection limit was studied. Both pretreatments were found to accurately resolve the analyte signal and allow the construction of PLS models from a reduced number of factors; however, they provided no substantial advantage in terms of %RSE for the prediction samples. Multiple methodologies for the estimation of detection limits could be found in the bibliography. Nevertheless, detection limits were determined by a multivariate method based on the sample-specific standard error for PLS regression, and compared with the univariate method endorsed by ISO 11483. The two methods gave similar results, both being effective for the intended purpose of estimating detection limits for PLS models. Although OSC and NAS allow isolating the analyte signal from the matrix signal, they provide no substantial improvement in terms of detection limits. The proposed method was used to the determine 2-ethylhexanol at concentrations from 20 to 1600 ppm in an industrial ester. The detection limit obtained, round 100 ppm, testifies to the ability of NIR spectroscopy to detect low concentrated analytes.  相似文献   

12.
Nowadays, near-infrared spectroscopy chemical imaging (NIR-CI) has been widely used in pharmaceutical analysis since it provides important surface information about the samples. In this work the information of NIR-CI at the pixel level was compared through calculation of the similarity between distribution maps of concentration obtained by different multivariate calibration approaches. The comparison was performed by using four different multivariate methods (MCR, MLR, CLS and PLS) in analysis of carbamazepine pharmaceutical formulations. For global determination, all models developed showed RMSEP below 1.9% (w/w) for active principal ingredient (API) and better than 4.6% (w/w) for excipients. Also, the distribution maps obtained by PLS, CLS and MCR showed great similarity for all compounds of the formulation as well with concentrations in the tablets. However, comparing the distribution maps obtained by MLR with those from the other chemometric tools, a lower similarity was observed. Thus, this fitted model does not ensure, by itself, that the images obtained are reliable or accurate. The paper also compares the distribution maps of concentrations obtained from all constituents present in the pharmaceutical formulation with their respective micrographs.  相似文献   

13.
14.
New approach for chemometrics algorithm named region orthogonal signal correction (ROSC) has been introduced to improve the predictive ability of PLS models for biomedical components in blood serum developed from their NIR spectra in the 1280-1849 nm region. Firstly, a moving window partial least squares regression (MWPLSR) method was employed to locate the region due to water as a region of interference signals and to find the informative regions of glucose, albumin, cholesterol and triglyceride from NIR spectra of bovine serum samples. Next, a novel chemometrics method named searching combination moving window partial least squares (SCMWPLS) was used to optimize those informative regions. Then, the specific regions that contained the information of water, glucose, albumin, cholesterol and triglyceride were obtained. When an interested component in the bovine serum solution, such as glucose, albumin, cholesterol or triglyceride is being an analyte, the other three interests and water are considered as the interference factors. Thus, new approach for ROSC has employed for each specific region of interference signal to calculate the orthogonal components to the concentrations of analyte that were removed specifically from the NIR spectra of bovine serum in the region of 1280-1849 nm and the highest interference signal for model of analyte will be revealed. The comparison of PLS results for glucose, albumin, cholesterol and triglyceride built by using the whole region of original spectra and those developed by using the optimized regions suggested by SCMWPLS of original spectra, spectra treated OSC for orthogonal components of 1-3 and spectra treated ROSC using selected removing the highest interference signals from the spectra for orthogonal components of 1-3 are reported. It has been found that new approach of ROSC to remove the highest interference signal located by SCMWPLS improves of the performance of PLS modeling, yielding the lower RMSECV and smaller number of PLS factors.  相似文献   

15.
A methodology was developed to determine the intrinsic viscosity of poly(ethylene terephthalate) (PET) using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and multivariate calibration (MVC) methods. Multivariate partial least squares calibration was applied to the spectra using mean centering and cross validation. The results were correlated to the intrinsic viscosities determined by the standard chemical method (ASTM D 4603-01) and a very good correlation for values in the range from 0.346 to 0.780 dL g−1 (relative viscosity values ca. 1.185-1.449) was observed. The spectrophotometer detector sensitivity and the humidity of the samples did not influence the results. The methodology developed is interesting because it does not produce hazardous wastes, avoids the use of time-consuming chemical methods and can rapidly predict the intrinsic viscosity of PET samples over a large range of values, which includes those of recycled materials.  相似文献   

16.
The most common fraudulent practice in the vinegar industry is the addition of alcohol of different origins to the base wine used to produce wine vinegar with the objective of reducing manufacturing costs. The mixture is then sold commercially as genuine wine vinegar, thus constituting a fraud to consumers and an unfair practice with respect to the rest of the vinegar sector. A method based on near-infrared spectroscopy has been developed to discriminate between white wine vinegar and alcohol or molasses vinegar. Orthogonal signal correction (OSC) was applied to a set of 96 vinegar NIR spectra from both original and artificial blends made in the laboratory, to remove information unrelated to a specific response. The specific response used to correct the spectra was the extent of adulteration of the vinegar samples. Both raw and corrected NIR spectra were used to develop separate classification models using the potential functions method as a class-modeling technique. The previous models were compared to evaluate the suitability of near-infrared spectroscopy as a rapid method for discrimination between vinegar origin. The transformation of vinegar NIR spectra by means of an orthogonal signal-correction method resulted in notable improvement of the specificity of the constructed classification models. The same orthogonal correction approach was also used to perform a calibration model able to detect and quantify the amount of exogenous alcohol added to the commercial product. This regression model can be used to quantify the extent of adulteration of new vinegar samples.  相似文献   

17.
《Analytica chimica acta》2004,514(1):57-67
Two orthogonal signal correction methods (OSC and DOSC) were applied on a set of 83 roasted coffee NIR spectra from varied origins and varieties in order to remove information unrelated to a specific chemical response (caffeine), which was selected due to its high discriminant ability to differentiate between arabica and robusta coffee varieties. These corrected NIR spectra, as well as raw NIR spectra and three chemical quantities (caffeine, chlorogenic acids and total acidity), were used to develop separate classification models accordingly using the potential functions method as a class-modelling technique in order to evaluate their respective capacities to discriminate between coffee varieties and the influence of these pre-processing methods on the classification of the coffee samples into their corresponding variety class. The transformation of roasted coffee NIR spectra by means of an orthogonal signal correction method, taking into account in this correction a chemical response closely related to the sample origin, prompted a notable improvement in the specificity of the constructed classification models.  相似文献   

18.
Urinary albumin is an important diagnostic and prognostic marker for cardiorenal disease. Recent studies have shown that elevation of albumin excretion even in normal concentration range is associated with increased cardiorenal risk. Therefore, accurate measurement of urinary albumin in normal concentration range is necessary for clinical diagnosis. In this work, thiourea-functionalized silica nanoparticles are prepared and used for preconcentration of albumin in urine. The adsorbent with the analyte was then used for near-infrared diffuse reflectance spectroscopy measurement directly and partial least squares model was established for quantitative prediction. Forty samples were taken as calibration set for establishing PLS model and 17 samples were used for validation of the method. The correlation coefficient and the root mean squared error of cross validation is 0.9986 and 0.43, respectively. Residual predictive deviation value of the model is as high as 18.8. The recoveries of the 17 validation samples in the concentration range of 3.39-24.39 mg/L are between 95.9%-113.1%. Therefore, the method may provide a candidate method to quantify albumin excretion in urine.  相似文献   

19.
Mid-infrared (MIR) and near-infrared (NIR) spectroscopy were used to determine water in lubricating oils with high additive contents that introduce large errors in determinations by the Karl-Fischer and hydride methods. MIR spectra were obtained in the attenuated total reflectance (ATR) mode and exhibited water specific band absorption in the region 3100–3700cm–1, which facilitated calibration. Multivariate (partial least-squares regression, PLSR) and univariate calibration (based on peak height and band area as independent variables) were tested. Both led to errors of prediction less than 5%. NIRS determinations rely on absorbance and first-derivative spectra, in addition to two different types of multivariate calibration,viz. inverse multiple linear regression (MLR) and partial least-squares regression (PLSR). Both approaches gave similar results, with errors of prediction less than 2%.For none of the proposed approaches any sample pretreatment for recording spectra is required.  相似文献   

20.
Nan Sheng 《Talanta》2009,79(2):339-683
Near-infrared spectroscopy (NIRS) has been proved to be a powerful analytical tool and used in various fields, it is seldom, however, used in the analysis of metal ions in solutions. A method for quantitative determination of metal ions in solution is developed by using resin adsorption and near-infrared diffuse reflectance spectroscopy (NIRDRS). The method makes use of the resin adsorption for gathering the analytes from a dilute solution, and then NIRDRS of the adsorbate is measured. Because both the information of the metal ions and their interaction with the functional group of resin can be reflected in the spectrum, quantitative determination is achieved by using multivariate calibration technique. Taking copper (Cu2+), cobalt (Co2+) and nickel (Ni2+) as the analyzing targets and D401 resin as the adsorbent, partial least squares (PLS) model is built from the NIRDRS of the adsorbates. The results show that the concentrations that can be quantitatively detected are as low as 1.00, 1.98 and 1.00 mg L−1 for Cu2+, Co2+ and Ni2+, respectively, and the coexistent ions do not influence the determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号