首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first use of methyl 2-pyridyl ketoxime (mepaoH) in homometallic lanthanide(III) [Ln(III)] chemistry is described. The 1:2 reactions of Ln(NO3)3·nH2O (Ln = Nd, Eu, Gd, Tb, Dy; n = 5, 6) and mepaoH in MeCN have provided access to complexes [Ln2(O2CMe)4(NO3)2(mepaoH)2] (Ln = Nd, 1; Ln = Eu, 2; Ln = Gd, 3; Ln = Tb, 4; Ln = Dy, 5); the acetato ligands derive from the LnIII—mediated hydrolysis of MeCN. The 1:1 and 1:2 reactions between Dy(O2CMe)3·4H2O and mepaoH in MeOH/MeCN led to the all-acetato complex [Dy2(O2CMe)6(mepaoH)2] (6). Treatment of 6 with one equivalent of HNO3 gave 5. The structures of 1, 5, and 6 were solved by single-crystal X-ray crystallography. Elemental analyses and IR spectroscopy provide strong evidence that 2–4 display similar structural characteristics with 1 and 5. The structures of 1–5 consist of dinuclear molecules in which the two LnIII centers are bridged by two bidentate bridging (η1:η1:μ2) and two chelating-bridging (η1:η2:μ2) acetate groups. The LnIII atoms are each chelated by a N,N’-bidentate mepaoH ligand and a near-symmetrical bidentate nitrato group. The molecular structure of 6 is similar to that of 5, the main difference being the presence of two chelating acetato groups in the former instead of the two chelating nitrato groups in the latter. The geometry of the 9-coordinate LnIII centers in 1, 5 and 6 can be best described as a muffin-type (MFF-9). The 3D lattices of the isomorphous 1 and 5 are built through H-bonding, π⋯π stacking and C-H⋯π interactions, while the 3D architecture of 6 is stabilized by H bonds. The IR spectra of the complexes are discussed in terms of the coordination modes of the organic and inorganic ligands involved. The Eu(III) complex 2 displays a red, metal-ion centered emission in the solid state; the TbIII atom in solid 4 emits light in the same region with the ligand. Magnetic susceptibility studies in the 2.0–300 K range reveal weak antiferromagnetic intramolecular GdIII…GdIII exchange interactions in 3; the J value is −0.09(1) cm−1 based on the spin Hamiltonian Ĥ = −J(ŜGd1·ŜGd2).  相似文献   

2.
The reaction of [Ln(hfac)3] ⋅ 2 H2O and pyridine-N-oxide (PyNO) leads to isostructural dimers of the formula [Ln(hfac)3(PyNO)]2 (Ln=Eu, Gd, Tb, Dy). The Dy derivative shows a remarkable single-molecule magnet behavior with complex hysteresis at 1.4 K. The dynamics of the magnetization features are two relaxation regimes: a thermally activated one at high temperature (τ0=(5.62±0.4)×10−11 s and Δ=(167±1) K) and a quantum tunneling regime at low temperature with a tunneling frequency of 0.42 Hz. The analysis of the Gd derivative evidences intradimer antiferromagnetic interactions (J=(−0.034±0.001) cm−1). Moreover, the Eu, Tb, and Dy derivatives are luminescent with quantum yield of 51, 53, and 0.1 %, respectively. The thermal investigation of [Dy(hfac)3(PyNO)]2 shows that the dimers can be sublimated intact, suggesting their possible exploit as active materials for surface-confined nanostructures to be investigated by fluorimetry methods.  相似文献   

3.
Polycrystalline Ba2LnSbO6 (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) are cubic, perovskite-type compounds, space group Fm3m (No. 225), Z = 4, with a values from a = 8.544(2) Å for Ba2NdSbO6 to a = 8.368(1) Å for Ba2YbSbO6. X-ray diffraction data for all the compounds and the results of magnetic measurements for two of them are given.  相似文献   

4.
We report the synthesis of Ln3+ nitrate [Ln(Tpm)(NO3)3] ⋅ MeCN (Ln=Yb ( 1Yb ), Eu ( 1Eu )) and chloride [Yb(Tpm)Cl3] ⋅ 2MeCN ( 2Yb ), [Eu(Tpm)Cl2(μ-Cl)]2 ( 2Eu ) complexes coordinated by neutral tripodal tris(3,5-dimethylpyrazolyl)methane (Tpm). The crystal structures of 1Ln and 2Ln were established by single crystal X-ray diffraction, while for 1Yb high resolution experiment was performed. Nitrate complexes 1Ln are isomorphous and both adopt mononuclear structure. Chloride 2Yb is monomeric, while Eu3+ analogue 2Eu adopts a binuclear structure due to two μ2-bridging chloride ligands. The typical lanthanide luminescence was observed for europium complexes ( 1Eu and 2Eu ) as well as for terbium and dysprosium analogues ([Ln(Tpm)(NO3)3] ⋅ MeCN, Ln=Tb ( 1Tb ), Dy ( 1Dy ); [Ln(Tpm)Cl3] ⋅ 2MeCN, Ln=Tb ( 2Tb ), Dy ( 2Dy )).  相似文献   

5.
A series of neutral mononuclear lanthanide complexes [Ln(HL)2(NO3)3] (Ln = La, Ce, Nd, Eu, Gd, Dy, Ho) with rigid bidentate ligand, HL (4′-(1H-imidazol-1-yl)biphenyl-4-carboxylic acid) were synthesized under solvothermal conditions. The coordination compounds have been characterized by infrared spectroscopy, thermogravimetry, powder X-ray diffraction and elemental analysis. According to X-ray diffraction, all the complexes are a series of isostructural compounds crystallized in the P2/n monoclinic space group. Additionally, solid-state luminescence measurements of all complexes show that [Eu(HL)2(NO3)3] complex displays the characteristic emission peaks of Eu(III) ion at 593, 597, 615, and 651 nm.  相似文献   

6.
The interaction between lanthanide ions LnIII (Ln = La, Nd, Sm–Dy, Er, Yb) and nitrate ions is investigated by FT-IR spectroscopy in dilute anhydrous MeCN solution. The work is performed for ratios R = [NO]t/[LnIII]t ranging from 0 to 8 and for solutions generally 0.05M in LnIII, prepared from anhydrous lanthanide perchlorates Ln(ClO4)3. When nitrate is progressively added to the Ln(ClO4)3 solutions, the formation of [Ln(NO3)n](3?n)+ species is clearly evidenced by the FT-IR spectra. All the NO3? ions are coordinated and bidentate. A quantitative study was performed using the v1 and v6 vibrational modes for coordinated NO ions. The average coordination numbers estimated for Nd, Eu, Tb, and Er in solutions of trinitrates are 9.0, 9.1, 8.3 and 8.2, respectively (±0.3 unit). In presence of an excess NO, these numbers become 9.8, 10.2, 10.0, 9.8, 9.9, and 9.9 (±0.3 unit) for La, Nd, Eu, Tb, Er, and Yb, respectively. No hexanitrato species forms under the experimental conditions used (R up to 8). The structural aspect of the various nitrato species is also investigated. In the pentanitrato species, all the ligands appear to be equivalent, while large inequivalences are observed for Ln(NO3)3 solutions. Since for the latter most of the absorption bands assigned to nitrate vibrations contain several components, a curve-fitting procedure has been used for decomposing the v2, v4 and v6 vibrations. There is a considerable difference between LnIII ions, the nitrate inequivalences being larger in the middle of the series.  相似文献   

7.
New complexes of lanthanide nitrates with 4N-(2′-hydroxy benzylidene)-aminoantipyrine (HBAAP) having the general formula [Ln(HBAAP)2(NO3)3] (where Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y) have been prepared and characterized. Conductance studies indicate non-electrolytic behaviour for these complexes. Their infrared spectra show that both the ligand and the nitrate group are bound to the metal ion in a bidentate fashion. Electronic spectra indicate weak covalent character in the metal-ligand bond. Thermogravimetric studies indicate that these complexes are stable up to ~200°C and undergo complete decomposition in the range 200–550° resulting in the formation of the stable lanthanide oxides.  相似文献   

8.
Complexes of lanthanoid trinitrates Ln(NO3)3 with 15-crown-5 ether 1 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) and with 18-crown-6 ether 2 (Ln = La, Ce, Pr, Nd) having a 1:1 stoichiometry as well as 4:3 complexes with 2 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) have been synthesized and characterized. All the isolated complexes are solvent free. At 170–220° the 1:1 complexes of 2 are quantitatively transformed into 4:3 complexes. X-Ray powder diagrams of the neodymium complexes with 2 indicate that both the 1:1 and 4:3 complexes are genuine compounds. All the 1:1 complexes show a characteristic IR. absorption band at 875–880 cm?1 absent from both the spectra of the free ligands and of the 4:3 complexes. The spectroscopic properties (IR. and electronic spectra, fluorescence lifetimes) of the complexes and the low magnetic moments of the Ln(III) ions in the complexes with Ln = Ce-Eu are indicative of a strong interaction between the lanthanoid ions and the crown ethers 1 and 2 .  相似文献   

9.
Treatment of Ln(NO3)3?nH2O with 1 or 2 equiv 2,2′‐bipyrimidine (BPM) in dry THF readily afforded the monometallic complexes [Ln(NO3)3(bpm)2] (Ln=Eu, Gd, Dy, Tm) or [Ln(NO3)3(bpm)2]?THF (Ln=Eu, Tb, Er, Yb) after recrystallization from MeOH or THF, respectively. Reactions with nitrate salts of the larger lanthanide ions (Ln=Ce, Nd, Sm) yielded one of two distinct monometallic complexes, depending on the recrystallization solvent: [Ln(NO3)3(bpm)2]?THF (Ln=Nd, Sm) from THF, or [Ln(NO3)3(bpm)(MeOH)2]?MeOH (Ln=Ce, Nd, Sm) from MeOH. Treatment of UO2(NO3)2?6H2O with 1 equiv BPM in THF afforded the monoadduct [UO2(NO3)2(bpm)] after recrystallization from MeOH. The complexes were characterized by their crystal structure. Solid‐state luminescence measurements on these monometallic complexes showed that BPM is an efficient sensitizer of the luminescence of both the lanthanide and the uranyl ions emitting visible light, as well as of the YbIII ion emitting in the near‐IR. For Tb, Dy, Eu, and Yb complexes, energy transfer was quite efficient, resulting in quantum yields of 80.0, 5.1, 70.0, and 0.8 %, respectively. All these complexes in the solid state were stable in air.  相似文献   

10.
The ligand 2,6-bis(1-methylbenzimidazol-2-yl)pyridine (mbzimpy, 1 ) reacts with EuIII to give [Eu(mbzimpy)(NO3)3(CH3OH)] [ 4 ] whose crystal structure (EuC22H21N8O10, a = 7.658(3) Å, b = 19.136(2) Å, c = 8.882 Å, β = 104.07(1)°, monoclinic, P21, Z = 2) shows a mononuclear structure where EuIII is ten-coordinate by a meridional tridentate mbzimpy ligand, three bidentate nitrates, and one CH3OH molecule, leading to a low-symmetry coordination sphere around the metalion. Essentially the same coordination is found in the crystal structure of [Eu(obzimpy)(NO3)3] ( 8 ) (EuC35H45N8O9, a = 9.095(2) Å, b = 16.624(2) Å, c = 26.198(6) Å, β = 95.85(1)°, monoclinic, P21/c, Z = 4) obtained by reaction of 2,6-bis(1-octylbenzimidazol-2-yl)pyridine (obzimpy, 2 ) with EuIII. Detailed photophysical studies of crystalline [Ln(mbzimpy)(NO3)3(CH3OH)] and [Ln(obzimpy)(NO3)3] complexes (Ln = Eu, Gd, Tb, Lu) show that 1 and 2 display 1ππ* and 3ππ* excited states very similar to those observed in 2,2′:6′,2″-terpyridine, leading to efficient ligand to LnIII intramolecular energy transfer. Spectroscopic results show that an extremely efficient mbzimpy-to-EuIII transfer occurs in [Ln(mbzimpy)(NO3)3(CH3OH)] and in the case of TbIII, a TbIII-to-mbzimpy back transfer is also implied in the deactivation process. The origin of these peculiar effects and the influence of ligand design by going from mbzimpy to obzimpy are discussed. 1H-NMR and luminescence data indicate that the structure found in the crystal is essentially maintained in solution.  相似文献   

11.
The complexes formed in the reaction between some lanthanide perchlorates and N-(2-pyridyl)acetamide (aapH) have been prepared and characterized. The compounds have the formulae [Ln(aapH)4] (ClO4)3 (where Ln  Pr, Nd, Eu, Gd, Ho, Yb and Lu) and are solid crystalline substances. The new compounds were characterized by means of chemical analyses, molar conductivities, vibrational spectra, thermograviemetry and electronic absorption and emission spectra. The vibrational spectra and molar conductances indicate that the perchlorate groups are ionic and that aapH acts as a bidentate ligand through the carbonyl oxygen and the ring nitrogen. The PMR of La(aapH)4 (ClO4)3 and [Lu(aapH)4]ClO4)3 reveals that the ligands are planar and corroborates the vibrational evidence that they coordinate in a bidentate manner. The oscillator strength (Pexp) of the hypersensitive transition of the Nd(III) complex has been studied and the nephelauxetic effect has been evalauted. The emission of the Eu(III) complex at 77° is very intense and a tentative assignment of its symmetry has been made.  相似文献   

12.
A family of linear Dy3 and Tb3 clusters have been facilely synthesized from the reactions of DyCl3, the polydentate 3‐methyloxysalicylaldoxime (MeOsaloxH2) ligand with auxiliary monoanionic ligands, such as trichloroacetate, NO3?, OH?, and Cl?. Complexes 1 – 5 contain a nearly linear Ln3 core, with similar Ln???Ln distances (3.6901(4)–3.7304(3) Å for the Dy3 species, and 3.7273(3)–3.7485(5) Å for the Tb3 species) and Ln???Ln???Ln angles of 157.036(8)–159.026(15)° for the Dy3 species and 157.156(8)–160.926(15)° for the Tb3 species. All three Ln centers are bridged by the two doubly‐deprotonated [MeOsalox]2? ligands and two of the four [MeOsaloxH]? ligands through the N,O‐η2‐oximato groups and the phenoxo oxygen atoms (Dy‐O‐Dy angles=102.28(16)–106.85(13)°; Tb‐O‐Tb angles=102.00(11)–106.62(11)°). The remaining two [MeOsaloxH]? ligands each chelate an outer LnIII center through their phenoxo oxygen and oxime nitrogen atoms. Magnetic studies reveal that both Dy3 and Tb3 clusters exhibit significant ferromagnetic interactions and that the Dy3 species behave as single‐molecule magnets, expanding upon the recent reports of the pure 4f type SMMs.  相似文献   

13.
Four Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized and structurally characterized: {Ln(hfac)3[NITPh(MeO)2]2} (Ln = Eu( 1 ), Gd( 2 ), Tb( 3 ), Dy( 4 ); NITPh(MeO)2 = 2‐(3′,4′‐dimethoxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide; hfac = hexafluoroacetylacetonate). The single‐crystal X‐ray diffraction analysis shows that these complexes have similar mononuclear trispin structures, in which central Ln(III) ion is eight‐coordinated by two O‐atoms from two nitroxide groups and six O‐atoms from three hfac anions. The variable temperature magnetic susceptibility study reveals that there exist ferromagnetic interactions between Gd(III) and the radicals, and antiferromagnetic interactions between two radicals (JGd‐Rad = 3.40 cm?1, JRad‐Rad = ?9.99 cm?1) in complex 2 . Meanwhile, antiferromagnetic interactions are estimated between Eu(III) (or Dy(III)) and radicals in complexes 1 and 4 , and ferromagnetic interaction between Tb(III) and radicals in complex 3 , respectively.  相似文献   

14.
Some new and bis-hydrazine lanthanide glyoxylates Ln[OOC-CHO]3(N2H4)2 where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb or Dy have been prepared and the compositions of the complexes have been determined by chemical analysis and elemental analysis. The magnetic moment and electronic spectra suggest except Ln3+ which is diamagnetic and all the other complexes are paramagnetic. Infrared spectral data indicate the bidentate coordination of carboxylates group is coordinate to lanthanide ion in a monodentate fashion. However, as a whole, glyoxylate ion acts as a bidentate ligand. The curves of all the complexes show multi-step degradation and the final products are found to be the respective metal oxides. The final residues were identified by their metal analysis, infrared spectra and the X-ray powder diffraction patterns. X-ray powder patterns of the complexes are almost super-imposable as expected which is in favour of isomorphism among the series.  相似文献   

15.
On Oxygen Perovskites with Pentavalent Ruthenium A BIIIRuVO6 with AII = Ba, Sr The perovskites Ba2BIIIRuVO6 with BIII = La, Nd, Sm, Eu, Gd, Dy, Y, are cubic (BIII = La: a = 8,544 Å; Y: a = 8,337 Å); with a partial order for BIII and RuV. The Sc compound, Ba2ScRuO6, has a hexagonal 6 L structure (a = 5.795 Å; c = 14.229 Å; sequence (hcc)2)2. The lattice of the Sr perovskites, Sr2BIIIRuVO6, with BIII = Eu, Gd, Dy, Y is rhombic distorted. The IR and FRI spectra are discussed.  相似文献   

16.
Five new complex compounds of the formula Ln(phen)2(NO3)3 were prepared. The X‐ray structural analyses indicate that they crystallize isostructurally in the monoclinic space group C2/c (no. 15) with cell dimensions for example for Pr(phen)2(NO3)3: a = 11.194(1) Å, b = 18.095(2) Å, c = 13.101(2) Å, β = 100.52(1)°, V = 2609.1(6) Å3, Z = 4. The crystal structures consist of [Ln(phen)2(NO3)3] complex molecules. The rare earth atoms are coordinated by four N atoms of two phen ligands and six O atoms of three nitrato groups to complete a distorted bicapped dodecahedron. The [Ln(phen)2(NO3)3] complex molecules are assembled via π‐π stacking interactions between the neighboring phen ligands to form 1D columnar chains, which are then arranged in the crystal structures according to pseudo 1D close‐packed patterns.  相似文献   

17.
The explorative lanthanide coordination chemistry of 4′,5′-bis-(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2′,3′-c]phenazine (TTF-dppz) is described. Thereby, four new Ln(III) complexes, [Ln(NO3)3(TTF-dppz)2] with Ln(III) = Nd (1), Eu (2), Gd (3), Tb (4), have been prepared and characterized. An X-ray crystallographic study of [Gd(NO3)3(TTF-dppz)2] (3) shows that the Gd(III) ion is coordinated to six oxygen atoms from three bidentate nitrate ligands and four nitrogen atoms from two bidentate TTF-dppz molecules forming a distorted bicapped square antiprism coordination geometry. The UV-vis spectra of the four Ln(III) complexes show very strong absorption bands in the UV region consistent with ligand centred electronic π-π* transitions and an intense broad absorption band in the visible region corresponding to a spin-allowed electronic π-π* 1ILCT transition from the TTF-dppz ligand. Upon coordination, the 1ILCT band of the free TTF-dppz ligand is bathochromically shifted. The electrochemical studies reveal that all complexes undergo two reversible oxidation and one (quasi)reversible reduction processes, ascribed to the successive oxidations of the TTF moiety and the reduction of the dppz unit, respectively. Moreover, the magnetic properties of complexes 3 and 4 are discussed.  相似文献   

18.
Weinschenkite-type LnPO4·2H2O (Ln is Gd, Tb, Dy, Ho, Y, Er, Tm or Yb) and rhabdophane-type, LnPO4·H2O (Ln is La, Ce, Pr, Nd, Sm, Eu, Gd, Tb or Dy) have been investigated by IR absorption spectroscopy (4000–400 cm−1) and Raman scanning spectroscopy (1400–100 cm−1).The IR spectra of weinschenkite-type LnPO4·2H2O (Ln is Gd→Yb) are characterized by a band at 750±6 cm−1 and the occurrence of a doublet in the region of the HOH bending vibrations, the low-frequency component exceeding the first high-frequency component in intensity. This rather peculiar pattern has already been observed in other compounds of similar chemical composition and is interpreted as arising from the presence of water molecules coordinated to the same metal cation. The Raman and IR spectra of these compounds have been interpreted in a manner based on the known structure of CaSO4·2H2O, which is isostructural with the weinschenkite-type compounds.The Raman and IR spectra of rhabdophane-type LnPO4·H2O is analyzed on the basis of the knowledge of the space group of rare earth orthophosphates rhabdophane-type. Its relation with the spectra of rare earth orthophosphates weinschenkite-type is discussed.  相似文献   

19.
Binuclear complexes of Sm(III), Eu(III), Gd(III), Tb(III), and Dy(III) nitrates with 4,4,10,10-tetramethyl-1,3,7,9-tetraazospiro[5.5]undecane-2,8-dione (C11H20N4O2, SC)—[Sm(NO3)3(SC)(H2O)]2(I), [Eu(NO3)3(SC)(H2O)]2 (II), [Gd(NO3)2(SC)(H2O)3)]2(NO3)2 (III), [Tb(NO3)3(SC)(H2O)]2 (IV), [Dy(NO3)3(SC)(H2O)]2 (V), are synthesized, and their X-ray diffraction analyses are carried out. The crystals of complexes I–V are monoclinic: space group P21/n for III and P21/c for I, II, IV, and V. In centrosymmetric coordination complexes II, III, IV, and V, the Ln atoms are coordinated by two O(1) and O(2) atoms of two molecules of the SC ligands bound by a symmetry procedure (1 ? x, ?y, 1 ? z), three bidentate nitrate anions, and a water molecule. The coordination numbers of the metal atoms are equal to 9, and the coordination polyhedra are considerably distorted three-capped trigonal prisms, whose bases include the O(1), O(2), O(12) and O(3), O(7), O(9) atoms. The dihedral angle between the bases of the prism is 18°, and that between the mean planes of the side faces is 55°–71° for I, 17° and 55°–71° for II, 16° and 55°–70° for IV, and 16° and 55°–70° for V. The Sm...Sm distance in complex I is 9.44 Å, Eu...Eu in II is 9.42 Å, Tb...Tb in IV is 9.36Å, and Dy...Dy in V is 9.36Å. The gadolinium atom in complex III is coordinated by two oxygen atoms of two ligand molecules bound by a symmetry procedure (?x, ?y + 1, ?z + 1), two bidentate nitrate anions, and three water molecules. One of the nitro groups in compound III is localized in the external coordination sphere of the metal. The coordination number of gadolinium is 9, and the coordination polyhedron is a significantly distorted three-capped trigonal prism, whose base includes the O(1), O(2), O(7) and O(4), O(5), O(9) atoms. The dihedral angle between the bases of the prism is 22.8°, and that between the mean planes of the side faces is 53°–72°. The Gd...Gd distance in complex III is 9.17 Å.  相似文献   

20.
The sequential reaction of a multisite coordinating compartmental ligand [2‐(2‐hydroxy‐3‐(hydroxymethyl)‐5‐methylbenzylideneamino)‐2‐methylpropane‐1,3‐diol] (LH4) with appropriate lanthanide salts followed by the addition of [Mg(NO3)2] ? 6 H2O or [Zn(NO3)2] ? 6 H2O in a 4:1:2 stoichiometric ratio in the presence of triethylamine affords a series of isostructural heterometallic trinuclear complexes containing [Mg2Ln]3+ (Ln=Dy, Gd, and Tb) and [Zn2Ln]3+ (Ln=Dy, Gd, and Tb) cores. The formation of these complexes is demonstrated by X‐ray crystallography as well as ESI‐MS spectra. All complexes are isostructural possessing a linear trimetallic core with a central lanthanide ion. The comprehensive studies discussed involve the synthesis, structure, magnetism, and photophysical properties on this family of trinuclear [Mg2Ln]3+ and [Zn2Ln]3+ heterometallic complexes. [Mg2Dy]3+ and [Zn2Dy]3+ show slow relaxation of the magnetization below 12 K under zero applied direct current (dc) field, but without reaching a neat maximum, which is due to the overlapping with a faster quantum tunneling relaxation mediated through dipole–dipole and hyperfine interactions. Under a small applied dc field of 1000 Oe, the quantum tunneling is almost suppressed and temperature and frequency dependent peaks are observed, thus confirming the single‐molecule magnet behavior of complexes [Mg2Dy]3+ and [Zn2Dy]3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号