首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
陈铭  徐君宜  高志山  朱丹  袁群 《光学学报》2019,39(9):300-308
针对微血管中血流速度慢、血红细胞数量少的特点,采用同步移相显微干涉术实时测量血红细胞的相位,建立血红细胞特征体积模型,对多帧相位图进行特征血红细胞匹配,以实现慢速血流检测。利用牛红细胞阿氏液制备了流速在0.1~1.0 mm/s内可控,内径为100μm的微血管模型,搭建了基于微偏振阵列的同步移相显微干涉实验装置,通过实验验证了所提慢速血流检测方法的可行性,血流速度的测量误差不超过±11.2%。  相似文献   

2.
Mirau相移干涉法测量微透镜阵列面形   总被引:3,自引:3,他引:0  
焦国华  李育林  胡宝文 《光子学报》2007,36(10):1924-1927
基于Mirau相移干涉法,在实验室环境下对微透镜阵列的微表面形貌进行了轮廓测量.实验使用He-Ne激光器作为光源,干涉成像系统由Mirau干涉物镜和其他光学元件组成.在实验中使用压电陶瓷执行器作为相移器,通过5步相移法计算待测表面形貌.实验结果表明,基于Mirau相移干涉法对微透镜阵列面形的测量,水平分辨率达到1.1 μm,垂直测量准确度达到6.33 nm,垂直测量范围为5 μm.对于微透镜阵列的面形测量,通过将微透镜阵列划分为若干微小区域以保证局部面形最大高度小于5 μm,然后辅以精密平移机构进行若干次5步相移法测量局部面形,再利用相位重建所得的数据进行拼接和3D轮廓重建,最终得到整个微透镜阵列的精确微表面形貌.  相似文献   

3.
在实际工程应用中,对材料形貌和结构变形等参量的检测是必不可少的,而且往往需要进行多参量同时测量。针对该背景,采用数字散斑干涉与数字条纹投影相结合的测量方法, 设计了一种集成光路,通过在数字散斑干涉实验光路中引入一个投影设备,实现物体表面形貌和微变形的同时测量。所提出的方法具有全场非接触测量的优点,且测量光路简单、操作方便、效率高、可靠性强。该方法的形貌测量分辨率优于10 μm,形变测量分辨率优于30 nm。  相似文献   

4.
基于迈克尔逊干涉的傅里叶变换散斑形貌测量技术   总被引:2,自引:2,他引:0  
马志芳  高秀梅  孙平 《应用光学》2008,29(6):874-877
提出了电子散斑干涉载频调制测量物体形貌的方法。采用典型的迈克尔逊干涉光路,将物体偏转一微小角度(等效为物面与参考面间形成空气楔)产生等厚干涉,可在物体的表面引入包含物体高度信息的载波干涉条纹。用CCD采集该载波条纹图,利用傅里叶变换法可解调出物体高度的位相信息,从而实现物体的形貌测量。介绍了电子散斑干涉载频调制测量物体形貌的原理,并进行了实物测量,给出了实验结果。由于该方法采用散斑干涉方法测量物体形貌,所以具有灵敏度高的优点。  相似文献   

5.
宽光谱干涉显微术广泛应用于高精密检测领域,它测量样品形貌通常采用垂直扫描干涉术对亚微米至毫米级特征进行测量,以及相移干涉术对纳米级特征进行测量。其中,相移干涉术精度可达纳米级,但量程有限,高度变化对应的相位需限制在区间内。采用包裹相位展开算法可以扩展相移干涉术的量程,也仅适用于平滑表面,当高度起伏超出焦深或者光源相干长度的限定范围时,干涉条纹模糊或对比度丧失,所解算的结果将产生较大误差甚至错误。提出一种基于相位展开及拼接算法的高精度、大量程宽光谱干涉显微测量方法,以干涉条纹调制度量化条纹质量,条纹对比度高、成像清晰的区域对应调制度较高,定义当前焦面条纹调制度高于阈值的区域为理想区域,定义焦面条纹调制度低于阈值的区域为问题区域。以相位展开算法获得理想区域中的样品相位分布,问题区域的包裹相位不进行展开。使用微位移结构纵向移动物镜焦平面,选择合理的步长,使相邻焦面位置理想区域展开后的真实相位保持部分区域重合,根据重合区域的相位值均差可以实现不同焦面位置的高精度相位拼接,最终获得扩展量程的高精度真实相位结果,进而可以恢复样品完整的表面形貌分布。该算法通过对理想区域的筛选,避免了相位在问题区域展...  相似文献   

6.
双光路成像干涉定心系统设计   总被引:1,自引:0,他引:1  
方超  向阳 《光子学报》2012,41(10):1180-1185
在光刻投影物镜镜片加工和装配时,为了满足磨边定心和装配定心阶段对镜片测量的量程、灵敏度和准确度不同的需求,本文提出了一种双光路准直成像复合干涉的定心方法,采用同一光路实现准直和干涉两种不同的测量方法,分别针对磨边定心和装配定心的测量需要.根据实际需要设计了测量系统的参量,根据该参量对系统的测量范围、灵敏度和准确度进行了理论分析.结果表明:该系统在准直测量阶段的测量范围从1μm到500μm,测量灵敏度最高为0.2%,测量准确度为1.02 μm;在干涉测量阶段的测量范围从0.01 μm到1.9 μm,测量灵敏度最低为0.1%,测量准确度达到0.2 μm,可以满足在磨边定心阶段大量程、低灵敏度、低准确度以及装配定心阶段小量程、高灵敏度、高准确度的定心要求.采用双光路成像干涉原理的定心系统满足了设计需求,可指导光刻投影物镜等高准确度物镜的生产和装调.  相似文献   

7.
数字全息显微成像有别于传统光学显微成像,可根据重建全息图获取细胞的生物学参数与形貌信息,是一种有效的非接触无损三维成像技术.随着像感器的发展与硬件计算能力的提升,数字全息显微成像技术在活体生物细胞检测尤其在血红细胞检测领域取得了显著进展和突破.本文介绍了同轴、离轴以及光镊辅助离轴的数字全息显微技术,这些技术利用瑞利索末菲反向传播算法、清晰度量化算法、分水岭分割算法、数字重聚焦方法与热涨落方法等来实现血红细胞的形变、空间分布、三维体积信息的高精度提取,有助于糖尿病、心血管疾病、帕金森氏疾病等病理研究.数字全息显微成像技术实现了传统三维显微成像技术难以达到的实时性和定量化检测,由于独有的非接触、无损性特点,在细胞成像领域应用前景广阔.  相似文献   

8.
陈家凤  肖风华 《光学技术》2012,38(2):185-190
介绍了基于计算机控制的频闪显微干涉测量技术,实现了对MEMS微变形镜的表面形貌、离面变形、静态电压-位移曲线和谐振频率的测量。采用频闪成像、计算机微视觉技术以及基于最小二乘曲面拟合法的亚像素定位技术实现了对平面内微位移的测量;利用频闪成像以及5步相移干涉技术实现了对干涉相位的提取,建立了适合于MEMS微变形镜特性测试的相位解缠算法,恢复了代表被测物体表面形貌的真实相位,实现了微变形镜静动态特性的测试。测试结果表明:频闪显微相移干涉测量技术具有测量速度快、精度高、易实现自动控制等特点。  相似文献   

9.
潘晖  屈玉福 《应用光学》2019,40(3):422-428
为实现表面微观形貌快速而较简单的检测, 一种使用非平行光干涉照明的光学显微三维形貌检测方法被提出。该方法使用空间光调制器对激光光束进行衍射, 选取光强相近的2个衍射级通过显微物镜, 双光束干涉可得到周期接近图像分辨率、相位可精确调节的照明条纹, 被测样本的三维形貌可通过拍摄4帧等相位差的条纹照明图像来计算得到。该方法不需借助干涉物镜产生条纹, 不需要轴向扫描装置记录条纹变化, 相位调节精确, 成像直观。此外, 该方法所产生干涉条纹的相位随坐标线性变化, 不需对条纹周期进行修正。因为照明条纹参数调节光路独立于显微成像光路, 系统装置具有光路简洁、易于调节的优点。为验证所提出三维检测精度, 以粗糙度100 nm的粗糙度对比模块和硅片为被测样品进行了三维轮廓重建实验, 实验结果显示, 所提出方法轴向重复性测量精度为8.6 nm(2σ)。  相似文献   

10.
电子散斑干涉载频调制形貌测量方法的分析   总被引:1,自引:0,他引:1  
根据电子散斑干涉载频调制测量物体形貌的基本原理,物体表面的微小偏转可引入包含物体高度信息的载波干涉条纹。将物体的偏转视为变形,对物体变形与载波干涉条纹之间的关系进行了讨论,得出了离面位移引入载波和面内位移引入含有物体高度信息相位的结论。发现利用典型电子散斑干涉系统测量物体形貌效果最好,并通过实验得到了验证。  相似文献   

11.
《Comptes Rendus Physique》2013,14(6):470-478
The apparent viscosity of blood flowing through narrow glass tubes decreases strongly with decreasing tube diameter over the range from about 300 μm to about 10 μm. This phenomenon, known as the Fåhraeus–Lindqvist effect, occurs because blood is a concentrated suspension of deformable red blood cells with a typical dimension of about 8 μm. Most of the resistance to blood flow through the circulatory system resides in microvessels with diameters in this range. Apparent viscosity of blood in microvessels in vivo has been found to be significantly higher than in glass tubes with corresponding diameters. Here we review experimental observations of bloodʼs apparent viscosity in vitro and in vivo, and progress towards a quantitative theoretical understanding of the mechanisms involved.  相似文献   

12.
在飞秒激光随机扫描双光子显微成像系统中使用宽带二维声光偏转器扫描飞秒激光,可以增大扫描角度至74 mrad,增大双光子显微成像范围。但宽带二维声光偏转器在大角度扫描时引入的色散较大,造成成像范围边缘的光斑严重畸变,边缘光斑直径达2.3 μm,影响边缘视场的成像质量。为了提高成像质量,设计了一种新的色散补偿方法,基于衍射透镜组成的开普勒望远系统,可以同时补偿不同扫描角度的不同色散。经过色散补偿后成像边缘的光斑直径小于1 μm,使系统获得大范围扫描成像的同时,所有扫描角度的色散都能够得到很好的补偿,在整个视场范围内光斑直径小于1 μm,实现更均匀的荧光激发,均匀成像。  相似文献   

13.
Based on interferometric microscopy, we develop a quantitative interferometric microscopic cytometer with expanded principal component analysis (PCA) phase retrieval method to obtain phase distributions of numerous biological samples with spatial resolution ~1.5 μm. The expanded PCA method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological samples are scanned in the field of view. This method is a time-domain algorithm which calculates faster than traditional frequency-domain algorithms and overcomes drawbacks induced by fast Fourier transform. The potential of this phase detecting system for studying biological systems is demonstrated with simulations and phase measurement of red blood cells in experiments.  相似文献   

14.
A fiber-optic based scanning confocal microscopic interferometer with digital feedback is developed for the precise measurement of the surface topography on a large-scale object of complex shape with steep surface slopes. Theoretical analysis on interference formation demonstrates the confocal characteristic of the proposed interferometer along its measurement path. Experimental results confirm the spatial resolution of the measuring system to be within 1 μm and the measurement accuracy to be better than 5 nm.  相似文献   

15.
1 Introduction  Thereisanincreasingrequirementfortheprecisemeasurementofthesurfacemicrostructuresonlarge scaleobjectsofcomplexshapewithsteepsurfaceslopes .Thestylusinstrumentiswidelyusedasthepracticalmethod ,butthemeasurementaccuracyislimitedduetoitscon…  相似文献   

16.
表面粗糙度测量的磁光位相调制和锁相干涉   总被引:1,自引:0,他引:1  
徐文东  李锡善 《光学学报》1994,14(12):303-1307
提出了一种表面粗糙度测量的新方法,该方法采用了微分偏振干涉的原理,利用由法拉第磁光调制器所组成的调制系统对偏振干涉光路的位相进行调制,利用锁相干涉原理对位相进行探测,该方法可实现无参考面快速非接触测量,在普通实验条件下,也可保持良好的稳定恶性循环 ,实验装置即可给出表面的轮廓又可给出其它统计数据,其横向分辨率为1.2μm纵向为2nm。  相似文献   

17.
激光自混合显微系统的设计及实验研究   总被引:2,自引:1,他引:1  
杨新建  朱钧  刘刚  张书练 《光学学报》2004,24(3):18-422
论述了自混合干涉技术的发展历程,并引入了自混合干涉显微技术的实验原理和研究近展;建立了He—Ne激光自混合干涉实验装置系统,获得了稳定的激光功率输出。然后,对基于激光自混合干涉技术的显微镜进行了研究,并详细给出了该系统的设计原理、装调方法和实验结果,得到了玻璃小球的三维形体信息图像。系统达到的横向分辨力1μm,纵向分辨力为15nm。上述实验结果证明自混合显微镜在微小物体的高精度形貌成像方面有着很大的潜力。  相似文献   

18.
This paper describes the development of a novel-phase resolved system based on swept-source optical-coherence tomography (SSOCT) for the ultrasensitive imaging and monitoring of gas microbubbles in aqueous media. The developed phase-stabilized SSOCT (PhS-SSOCT) system has an axial resolution of 10 μm, a phase sensitivity of 0.03 rad, an imaging depth of up to 6 mm in air, and a scanning speed of 20 kHz for a single A line. The performance of the sensing system was evaluated in water-containing gas microbubbles with a different diameter. The obtained results demonstrate that bubbles with a diameter greater than 10 μm could be detected by both structural imaging and phase response, whereas bubbles with diameters of less than 10 μm could be detected by the phase response of the SSOCT with a high sensitivity. The accuracy for the measurement of the diameter of gas microbubbles is limited to 10 μm in structural imaging and 0.01 μm in phase-sensitive monitoring. The results from this study indicate that PhS-SSOCT could be used to detect fast-moving microbubbles in aqueous solutions and ultimately could be applied for rapid assessment in biofluids (e.g., blood) and tissues (e.g., skin) in vivo.  相似文献   

19.
提出了一种新的时域两维荧光寿命显微测量技术,建立了一套荧光寿命成像显微系统,介绍了这种测量技术的数据处理方法。用标准样品对该系统进行了测试,实验表明,该系统的时间分辨率为2ps,在放大倍率为100倍的情况下,该系统的空间分辨率为8um。如果在现有的设备下采用更细的网格板和微位移系统,那么该系统的空间分辨率可小于1um.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号