共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
研究了全氟烷基磺酰氟/甲基三乙氧基硅烷/碱体系与α-芳基-α-羟基酮(酯)化合物不期望的氧化反应, 以中等到优良的收率生成了相应的1,2-二酮(α-酮酸酯)产物. 所用全氟烷基磺酰氟为全氟正丁基磺酰氟或全氟正辛基磺酰氟; 碱为1,8-二氮杂二环[5.4.0]十一碳-7-烯(DBU). 提出了一种可能的反应机理. 为制备芳基取代的1,2-二酮(或α-酮酸酯)化合物提供了一种新方法. 相似文献
3.
三组分双官能化反应是一种高效、简便构建C―C键、C―X键的方式. 双键广泛存在于众多有机化合物中, 对双键的双官能化反应研究有巨大的应用潜力. 本工作以Ni(COD)2为催化剂, 以芳基溴化镁、芳基溴化物为芳基化试剂, 实现了3-芳基-2-丙烯醛亚胺中碳碳双键的双芳基化反应. 该反应建立了一个新的镍催化α,β-不饱和醛的α,β-双芳基化方法, 可以高度区域选择性地向底物分子中引入两个不同取代的芳环, 得到多种2,3,3-三芳基丙醛骨架的产物. 利用这一反应作为核心步骤实现了天然产物Quebecol的简便合成. 机理研究表明, 该反应可能经历了亲核加成、金属交换、还原消除的历程. 相似文献
4.
在模拟生理条件下, 利用荧光光谱、 圆二色光谱和紫外-可见吸收光谱探究了羟丙基-β-环糊精(HPCD)对1-羟基芘(1-OHPyr)与牛血清白蛋白(BSA)相互作用的影响及其相关机制. 结果表明, 291 K下HPCD可使1-OHPyr与BSA的结合常数降低为1.45×105 L/mol; 导致1-OHPyr-BSA体系中BSA的α-螺旋含量恢复, 色氨酸(TRP)残基周围微环境的极性变化减弱; 致使1-OHPyr及BSA的荧光寿命均延长, 且二者的结合距离增大. 初步研究结果表明, HPCD与1-OHPyr的包络作用是HPCD影响BSA与1-OHPyr结合的主要原因. 相似文献
5.
以4种不同结构的α-二亚胺镍(Ⅱ)催化剂[(t-Bu)—N
CH—CH
N—(t-Bu)]NiBr2(C1), [C6H5—N
C(Me)—C(Me)
N—C6H5]NiBr2(C2), [(2,6-C6H3(Me)2)—N
C(Me)—C·(Me)
N—(2,6-C6H3(Me)2)]NiBr2(C3)和[(2,6-C6H3(i-Pr)2)—N
C(An)—C(An)
N—(2,6-C6H3(i-Pr)2)]NiBr2(An=acenaphthyl)(C4), 在甲基铝氧烷(MAO)作用下, 对甲基丙烯酸甲酯(MMA)进行催化聚合. 以C2为模型催化剂系统研究了Al/Ni摩尔比、 单体浓度、 聚合温度、 聚合时间和反应溶剂对催化活性及聚合物分子量的影响. 在较适合的聚合条件(催化剂用量为1.6 μmol, Al/Ni摩尔比为800, MMA浓度为2.9 mol/L, 甲苯为溶剂, 聚合温度为 60 ℃, 聚合时间为4 h)下, 讨论了催化剂结构对催化活性和聚合物分子量的影响. 研究发现, 催化剂C1~C3催化MMA聚合均得到富含间规结构的聚甲基丙烯酸甲酯(PMMA). 催化剂结构中空间位阻增大导致催化活性降低, 空间位阻最小的 C1催化活性最高[达107.8 kg/(mol Ni·h)]; 而空间位阻最大的C4催化活性仅为7.8 kg/(mol Ni·h). 催化剂结构中给电子效应增加有利于催化活性及聚合物分子量的增加. C2催化活性为62.5 kg/(mol Ni·h), 所得聚合物的分子量为5.0×104; 而具有较强给电子效应的C3催化活性达到96.9 kg/(mol Ni·h), 并得到更高分子量的聚合物(7.6×104). 相似文献
6.
为了发展有效合成α-腺嘌呤阿拉伯糖苷的方法,以1,2,3,5-四-O-乙酰基-β-D-阿拉伯糖和6-氯嘌呤为原料,在微波辐射和无溶剂、无催化剂条件下反应得到中间体9-α-D-(2',3',5'-三-O-乙酰基)阿拉伯呋喃糖基-6-氯嘌呤,收率85%。 该中间体物在Na2CO3催化下脱除乙酰基,然后“一锅”加入饱和的NH3/CH3OH溶液氨解,以90%的收率得到α-腺嘌呤阿拉伯糖苷。 关键中间体9-α-D-(2',3',5'-三-O-乙酰基)阿拉伯呋喃糖基-6-氯嘌呤的合成反应规模可以扩大到100 g。 类似地合成α-2-氟腺嘌呤阿拉伯糖苷和α-2-氨基腺嘌呤阿拉伯糖苷。 相似文献
7.
在聚烯烃行业蓬勃发展的几十年中, 如何合成具有独特结构和功能的聚烯烃一直是高分子化学家不断追求的目标. 时至今日, 科学家们已经可以通过调控单体结构、催化剂中心金属、配体结构以及聚合条件等来合成丰富多彩的聚烯烃. 在这品类繁多的聚烯烃中, 主链上含有脂肪环的聚烯烃因具有良好的热稳定性和透明度受到了广泛的关注. α,ω-双烯烃的配位聚合是获得主链含脂肪环的聚合物的一种高效手段, 这种方法具有单体易得且易修饰、聚合物微观结构可以被催化剂高效调控等优点. 根据第一次插入反应后的中间体发生的不同双键的插入反应可得到交联、含悬挂双键或含脂肪环的聚合物. 根据所得环化聚合物的环内两根支链的相对朝向将其分为顺反立构体; 再通过环与环之间的相对构型分为等规或间规立构体; 根据催化剂与单体发生第一次插入反应的 1,2-插入或 2,1-插入方式可以得到结构单元为单亚甲基环或二亚甲基环的聚合物; 根据催化剂的绝对构型不同可以得到旋光度大小一致、方向相反的手性聚合物. 上述这些聚合物的微观结构对于其聚集状态、热力学以及机械力学性能等可能会有明显的影响, 而这些均可以通过改变催化剂的中心金属和配体结构来进行精细的调控. 这篇综述着眼于α,ω-双烯烃的聚合物的精细结构, 着重介绍了如何通过变换催化剂结构来调控聚合物的结构, 并对该领域未来可能的发展方向进行了预测, 从而推动该类聚合物在构效关系、实际应用等方面的长足发展. 相似文献
8.
采用甲基丙烯酸缩水甘油酯原位聚合物基质, 将磺丁基醚-β-环糊精修饰到毛细管内壁, 制得了一种毛细管电色谱手性柱(SECDP), 并通过红外光谱(IR)和扫描电子显微镜(SEM)表征了其结构. 磺酸基可提供足够稳定的正向电渗流(EOF), 基于磺丁基醚-β-环糊精在固定相和流动相中的协同作用, 通过优化手性添加剂浓度、 pH值、 施加电压、 温度及有机调节剂含量等条件, 利用该开管电色谱柱拆分了氨氯地平、 尼莫地平和尼卡地平等10种地平类手性药物对映体. 优化的流动相组成为20 mmol/L NaH2PO4(pH=4.0), 含4.0 mmol/L 磺丁基醚-β-环糊精, 乙腈的体积分数为10%~25%, 施加电压15~25 kV, 温度为15 ℃, 电动进样2 kV×5 s, 检测波长为236 nm. 在上述条件下, 分离度(RS)可达3.62, 柱效达61011块/m, 分析时间一般为6~15 min. 基于色谱分离数据, 探讨了相关的手性分离机理. 相似文献
9.
为了探索α-氨基酸及其酯化物的侧链R基团对其与环糊精非共价复合物结合强度的影响, 将一定摩尔比的β-环糊精(β-CD)分别与L型正缬氨酸(n-Val)、 亮氨酸(Leu)、 苯丙氨酸(Phe)、 天冬氨酸(Asp)、 天冬氨酸-4-苄酯(Asp-4-benzyl ester)和天冬氨酸-4-叔丁酯(Asp-4-t-butyl ester)在室温下混合, 反应平衡后采用电喷雾电离质谱进行竞争反应检测, 并以改进的质谱滴定结合曲线拟合法计算结合常数. 结果表明, 它们均可形成摩尔比为1∶1的非共价复合物. 在2组竞争反应中, 复合物的结合强度顺序分别为[β-CD∶Asp-4-benzyl ester+H]+>[β-CD∶Asp-4-t-butyl ester+H]+>[β-CD∶Asp+H]+以及[β-CD∶Phe+H]+>[β-CD∶Leu+H]+>[β-CD∶n-Val+H]+. 质谱滴定曲线拟合法测得[β-CD∶n-Val+H]+, [β-CD∶Asp+H]+, [β-CD∶Asp-4-t-butyl ester+H]+, [β-CD∶Asp-4-benzyl ester+H]+, [β-CD∶Leu+H]+和[β-CD∶Phe+H]+的稳定常数(lgKst)分别为1.81, 2.54, 3.14, 3.26, 3.36和3.67, 结合强度依次增强. 竞争反应的定性分析结果与质谱滴定定量法测得结合强度结果的趋势一致. 由于所选用的α-氨基酸及其酯化物客体的羧基端(—COOH)和氨基端(—NH2)均相同, 且都为亲水基团, 仅有侧链R基团不同, 因此在溶液中客体分子受疏水驱动与β-CD主体靠近并结合时, 侧链R基团的疏水力和极性2个因素起重要作用. 由于客体分子体积小, 其碳端的羧基还可与β-CD大口或小口边缘的羟基形成氢键, 使复合物更加稳定. 相似文献
10.
11.
建立了在水相介质中, 在碳酸钾/硫脲联合促进下, 具有邻位氨基溴的酯和邻位氨基溴的酮在室温下发生溴化氢消除反应, 高收率地制备α,β-脱氢氨(功能化烯胺)的新方法. 共考察了23种不同结构α,β-邻位氨基溴的酯和α,β-邻位氨基溴的酮的反应情况, 证明该方法具有广泛的适应性. 实验发现, 无论底物为α-氨基-β-溴结构还是α-溴-β-氨基结构, 反应过程中都要经过一个氮丙啶过程, 而氮丙啶的开环是区域专一的, 因此产物具有区域专一性(烯键上的氨基均处在羰基的α-位). 所有产物的结构均经过核磁共振波谱及高分辩率质谱确证. 克量级放大实验结果表明, 该方法具有一定的用于工业化生产的可行性. 相似文献
12.
研究了Fe(Ⅲ)催化氯代炔烃水化生成α-氯代甲基酮化合物的反应, 考察了催化剂的种类、 酸的种类、 反应温度以及溶剂对反应的影响.结果表明, 采用FeCl3·6H2O(摩尔分数5%)和甲基磺酸(摩尔分数20%), 在1,2-二氯乙烷溶剂中, 氯代炔烃于80 ℃进行水化反应3 h, 可以高产率得到α-氯代甲基酮产物. 所得化合物的结构采用IR, 1H NMR, 13C NMR及MS等方法进行了表征. 该水化反应合成方法简单、 条件温和且收率良好, 为合成α-氯代甲基酮提供了一种简便途径. 相似文献
13.
以去氢骆驼蓬碱为原料, 经过脱甲基、 烷基化等步骤, 合成了一系列双-β-咔啉衍生物. 目标化合物均经核磁共振谱(NMR)和质谱(MS)进行结构确证. 以顺铂为阳性对照药, 采用四甲基偶氮唑盐(MTT)法考察了目标化合物体外抗肿瘤(Bel-7402, 786-0, BGC-823, A375, 769-P和MCF7等6株细胞)活性. 结果表明, 化合物4g和4o与阳性对照药相比具有良好的抗肿瘤活性, 其半抑制浓度(IC50)值均小于10 μmol/L. 初步构效关系研究表明, 当桥链亚甲基数目为8~10, β-咔啉环上9-丁基或9-异丁基取代时, 化合物的抗肿瘤活性较强. 相似文献
14.
为克服目前合成方法存在收率较低,反应时间长、产品分离困难等不足,本文以β-D-葡萄糖、乙酰溴为原料,经乙酰化、溴代反应合成了糖基体2,3,4,6-O-四乙酰基-α-D-溴代葡萄糖,再与4-羟基苯甲醛衍生物经糖苷化反应合成了5种4-甲酰基苯基(2,3,4,6-O-四乙酰基)-β-D-葡萄糖苷衍生物。 在合成4-甲酰基苯基(2,3,4,6-O-四乙酰基)-β-D-葡萄糖苷衍生物的过程中,采用10%(质量分数)NaOH溶液为缚酸剂,三(3,6-二氧杂庚基)胺(TDA-1)为相转移催化剂,反应物的收率为61%~69%,并应用核磁共振技术确定了产品的结构。 该方法具有产品收率较高,反应温和、操作简单等优点。 相似文献
15.
采用共沉淀法制备了7.5%Ru/ZrO2·xH2O催化剂,运用N2物理吸附-脱附法、X射线衍射、X射线光电子能谱和高分辨透射电子显微镜等技术对催化剂进行了表征,并用于催化肉桂醛选择加氢制肉桂醇反应中,考察了温度、H2压力和溶剂对肉桂醛转化率和肉桂醇选择性的影响.结果表明,肉桂醛转化率随着温度或H2压力的升高而升高,而肉桂醇选择性则随之下降.该催化剂在极性溶剂中比在非极性溶剂中表现出更高的活性和肉桂醇选择性.尤其在极性溶剂三乙胺(Et3N)中反应活性最高,且具有较高的肉桂醇选择性.在Et3N中加入水可进一步提高反应活性和选择性.以V(Et3N)/V(H2O)=4的混合物为溶剂,在4MPa和70℃的优化条件下,反应6h,肉桂醛转化率为97.9%,肉桂醇选择性达85.2%. 相似文献
16.
17.
采用光催化微反应器对铜箔表面附着的聚α烯烃进行了光催化降解处理, 利用X射线光电子能谱(XPS)、 电子自旋共振谱(ESR)和傅里叶变换红外光谱(FTIR)等对光催化降解前后聚α烯烃的元素化学状态、 自由基和官能团进行了检测, 并探讨了光催化降解机理. 结果表明, 聚α烯烃光催化降解过程中发生了含氧基团的引入和CO2脱附; 参加降解反应的自由基主要为羟基自由基·OH, 降解过程中—OH逐渐增多、 C—H键逐渐减少; 聚α烯烃光催化降解过程中, ·OH进攻聚α烯烃是从取代反应开始的, 首先取代的是末端的氢原子, 然后是末端羟基向醛基和羧基的转变, 最后是碳链断裂形成小分子有机物, 这一过程持续进行, 最终生成CO2和H2O等无机物. 相似文献
18.
以γ-环糊精(γ-CD)为主体, 采用饱和水溶液法对客体二甲戊灵进行包合. 采用紫外光谱以等摩尔连续变化法确定包合物的包合比为1∶1; 红外光谱证明二甲戊灵的部分苯环结构可能进入了γ-CD的空腔; 热分析结果证明包合作用提升了二甲戊灵的熔点; 粉末X射线衍射谱图中新衍射峰的出现说明形成了新物相; 扫描电镜则直观展现了包合物的外观. 以上结果均表明形成了γ-CD-二甲戊灵包合物, 其包合平衡常数K=1123.99 L/mol. 包合作用使二甲戊灵的熔点从54 ℃升至75 ℃, 溶解度提高了约11.5倍, 包合物热贮稳定性达标, 为进一步将其加工成其它水基化农药剂型提供了可能. 相似文献
19.
对β-分子筛(n(Si):n(Al)=15:1)分别进行酸洗、碱洗改性,制备出孔结构、酸性等性质不同的分子筛催化剂。 通过扫描电子显微镜(SEM)、X射线衍射(XRD)、N2吸附-脱附、NH3-TPD和Py-FTIR等表征手段对分子筛催化剂的结构、性能及其在苯的烷基化反应中的应用进行了研究。 结果表明,盐酸浸洗对β-分子筛的孔径、比表面积及孔容均有扩大作用,但在酸性上有所减弱;NaOH溶液浸洗造成了分子筛骨架的崩塌,对其酸性与孔结构均造成了破坏;尿素改性不仅改善了分子筛的孔结构性质,而且对分子筛酸性影响较小,是一种温和、有效的改性方式。 尿素改性β-分子筛催化剂催化苯与煤基冷阱油的烷基化反应活性最好,烯烃转化率达91.2%,且重烷基苯2位异构体(2-HAB)和3位异构体(3-HAB)在产物中含量最高,选择性分别为50.1%和33.5%,占整个烷基化产物的84%。 相似文献
20.
负载型纳米贵金属催化剂催化吡啶及其衍生物的加氢反应 总被引:2,自引:0,他引:2
制备了负载型高分散的纳米贵金属催化剂和含Ru的双金属催化剂,并考察了催化剂对吡啶及其衍生物加氢反应的催化性能. 结果表明, 5%Ru/C催化剂对吡啶加氢反应的催化活性高于5%Pd/C, 5%Pt/C和5%Ir/C. 在100 ℃, 3.0 MPa, 1 h和Ru/吡啶摩尔比=2.5/1000 的条件下, 5%Ru/C催化吡啶加氢的转化率大于99.9%, 生成哌啶的选择性为100%. 催化剂重复使用5次后,活性和选择性无明显下降. 在Ru催化剂中加入少量的Pd和Ir后催化剂活性没有明显的变化. 采用X射线衍射、高分辨透射电镜和X射线光电子能谱对还原后的5%Ru/C催化剂进行表征,结果表明Ru以高分散金属态存在,其平均粒径小于5 nm. 不同底物的加氢反应活性为: 吡啶≈2-甲基吡啶>2,6-二甲基吡啶>3-甲基吡啶>4-甲基吡啶>3,5-二甲基吡啶>2-甲氧基吡啶. 相似文献