共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
近年来,随着深度传感器和三维激光扫描设备的普及,点云数据引起了广泛关注。相对于二维图像,点云数据不仅包含场景的深度信息,还不受光照等环境因素的影响,能够更精确地实现目标识别和三维定位。因此,基于点云的三维目标检测技术已经成为智能空间感知和场景理解的关键技术。本文首先介绍了点云数据的特点,并探讨了不同类型的点云特征提取方法;其次,详细阐述了基于体素、点、图以及体素与点混合的点云目标检测方法的原理和发展历程;然后,介绍了常见的室内外点云目标检测数据集和评价指标,并对各类点云目标检测方法在KITTI和Waymo数据集上的性能进行了详细的比较和分析;最后,对点云目标检测技术的研究进展进行了总结和展望。 相似文献
3.
环境感知是无人车夜间行驶中的一项关键任务,提出一种改进的YOLOv3网络,以实现夜间对无人车获取的红外图像中行人、车辆的检测,将判断周边车辆的行驶方向问题转化为预测车辆位置的角度大小问题,并与深度估计信息进行融合对周边车辆行驶的距离和速度作出判断,从而实现夜间无人车对周边车辆行驶意图的感知。该网络具有端到端的优点,能实现整张图像作为网络的输入,直接在输出层回归检测目标的边界框位置、所属的类别和车辆的角度预测结果,并和深度估计信息融合得到周边车辆的距离和速度信息。实验结果表明,使用改进的YOLOv3网络对夜间无人车获取的红外图像进行目标检测的时间为0.04 s/帧,角度和速度预测效果较好,准确性和实时性达到了实际应用要求。 相似文献
4.
地面战场上目标检测是精准跟踪以及准确打击的前提,在现代无人化陆战中起着至关重要的作用。传统的图像检测方法受到光照,天气等条件制约,利用激光雷达技术进行3D目标检测能够显著改善车体的感知能力。针对应用于陆战无人车的检测任务,提出了一种基于卷积神经网络的3D点云检测算法,通过优化VoxelNet的体素化和特征融合模块设计了一组端对端的高效网络,并改进了一种基于距离的非极大值抑制策略。实验表明原始VoxelNet在自建数据集上车辆目标AP值为78.53%,而改进后的网络性能达84.11%,对未来军事领域的三维目标检测任务具有参考价值。 相似文献
5.
基于复杂度的自适应门限弱小目标检测方法 总被引:2,自引:0,他引:2
针对红外弱小目标检测问题,提出了一种基于图像复杂度的自适应门限目标检测方法.讨论了天空中四类不同区域的图像信息熵.图像信息熵虽然较好地表达了图像的平均信息量,但对图像的突变点不敏感.将它改进得到图像方差加权信息熵,其较好地反映了图像的复杂度特征.将图像方差加权信息熵作为图像复杂度的定量描述,用两种特定的分析模板对图像复杂度进行分析.在目标区域中,两种分析模板得到的复杂度差异较大,而非目标区域的两种复杂度则基本没有差异.算法获取两种分析模板下的复杂度图像,再对两种复杂度图像做差,得到复杂度差值图像.对差值图像建立指数模型得到自适应分割门限完成目标检测.实验结果表明,该方法对低信杂比的红外云层背景弱小目标图像具有良好的检测效果. 相似文献
6.
7.
针对红外弱小目标检测问题,提出了一种基于图像复杂度的自适应门限目标检测方法.讨论了天空中四类不同区域的图像信息熵.图像信息熵虽然较好地表达了图像的平均信息量,但对图像的突变点不敏感.将它改进得到图像方差加权信息熵,其较好地反映了图像的复杂度特征.将图像方差加权信息熵作为图像复杂度的定量描述,用两种特定的分析模板对图像复杂度进行分析.在目标区域中,两种分析模板得到的复杂度差异较大,而非目标区域的两种复杂度则基本没有差异.算法获取两种分析模板下的复杂度图像,再对两种复杂度图像做差,得到复杂度差值图像.对差值图像建立指数模型得到自适应分割门限完成目标检测.实验结果表明,该方法对低信杂比的红外云层背景弱小目标图像具有良好的检测效果. 相似文献
8.
为提高红外图像目标检测的精度和实时性,提出一种基于伪模态转换的红外目标融合检测算法.首先,利用双循环的生成对抗网络无需训练图像场景匹配的优势,获取红外图像所对应的伪可见光图像;然后,构建残差网络对双模态图像进行特征提取,并采取add叠加方式对特征向量进行融合,利用可见光图像丰富的语义信息来弥补红外图像目标信息的缺失,从而提高检测精度;最后,考虑到目标检测效率问题,采用YOLOv3单阶段检测网络对双模态目标进行三个尺度的预测,并利用逻辑回归模型对目标进行分类.实验结果表明,该算法能够有效地提高目标检测准确率. 相似文献
9.
10.
11.
基于数学形态学的弱点状运动目标的检测 总被引:10,自引:0,他引:10
提出了一种新的基于数学形态学的红外图像序列中弱点状运动目标的非参数检测算法。采用数学形态学抑制背景杂波干扰和增强目标,用沿时间轴投影和二维空域搜索代替复杂的时空三维搜索形成组合帧,然后在每条可能的轨迹上将进行目标能量累加,实现了一种快速检测前跟踪(TBD)检测算法。仿真实验表明:在恒虚警概率条件下,该检测算法能高效地检测信噪比约为2的弱点状运动目标,检测性能对噪声分布不敏感,能精确地得到目标的即时位置和速度信息,适合于实时图像处理和目标探测,具有很高的实用价值。 相似文献
12.
13.
14.
15.
16.
提出了一种新的运动目标检测方法,这种方法可以有效的提取目标轮廓。应用一种图像差分技术得到运动目标的初始轮廓线。使用了动态轮廓线使其收敛到目标轮廓。提出了一种新的目标轮廓特征级融合方法,求解两类模式图像的收敛动态轮廓线控制点向量差的范数平方极小化。这种方法不需要图像配准降低了融合的计算复杂度,有效提高了可见光图像中目标轮廓提取的精度。对比检测实验证实了算法的有效性。设计了一种基于Newmark方法的动态轮廓线快速迭代算法,将该方法和方法作了比较,对比实验表明这种方法的时间复杂度降低了22%。 相似文献
17.
18.
为了解决SUSAN滤波算子不能自适应调整滤波系数的问题,采用Geusebroek提出的各向异性高斯滤波器替代SUSAN滤波算子中的高斯滤波部分。由局部图像的方差和像素的邻域平滑度决定长短轴的方差,由该点的梯度方向决定滤波器的长轴方向,由局部图像的灰度值与均值差的一阶范数确定SUSAN滤波器的阈值,从而构造出各向异性SUSAN滤波器。将其用于红外弱小目标检测中,实验结果表明:各向异性SUSAN滤波器能够很好地保留图像中的边缘信息,使残差图像中弱小目标的信噪比增益和信杂比增益极大地提高,目标大小得到较好的保留,虚警率下降。 相似文献