共查询到20条相似文献,搜索用时 62 毫秒
2.
为确定飞秒激光光束对微尺度结构的烧蚀深度,研究了给定功率条件下对应的激光束有效烧蚀焦距。提出采用激光焦点处获得的烧痕阵列图像及在离焦状态下提取烧痕图像特征,通过分析图像特征与离焦距离,获得激光束有效烧蚀焦距范围的方法。在激光束焦点附近的硅晶片表面烧蚀出斑痕阵列,向下逐渐减小焦距,采集硅晶片斑痕图像,提取斑痕平均像素面积及斑痕目标与背景之间的R分量灰度差,获得斑痕像素面积及灰度差随激光束焦距变化的曲线;向上逐渐增大焦距,提取并获得斑痕像素面积及灰度差随激光束焦距变化的曲线。结合激光束向下离焦阈值(633 μm)及向上离焦阈值(993 μm),确定20 mW输出功率条件下,飞秒激光在硅晶片材料表面的有效烧蚀深度为360 μm。采用中位值方法确定了激光束在硅晶片表面聚焦时的焦距为0.823 mm。实验表明,激光烧蚀斑痕像素面积及灰度差与激光束焦距之间的关系能够客观地反映激光束有效烧蚀焦距的变化范围。 相似文献
3.
4.
自J.A.Stamper首先对自生磁场进行实验研究以来,人们的探索表明超强激光与固体靶相互作用中,在过密和次密等离子体区产生可能高达10^4T的自生磁场。 相似文献
5.
对强飞秒激光聚焦在空气中所激发的等离子体的发射光谱进行了实验研究.结果表明,光谱特征表现为短波段(截至波长为340 nm)强烈的连续谱和长波段(波长在800 nm附近)强度相对较低的线光谱.在脉冲宽度(50 fs)保持不变而不断调节激光脉冲能量时,等离子体光谱形状的特征基本相似;当激光脉冲能量(1 mJ)保持不变而脉冲宽度从50 fs增加至500 fs和1 ps时,连续谱的峰值(500 nm)显得格外突出,并开始呈现出线光谱特征.
关键词:
飞秒激光
激光空气等离子体
发射光谱
线光谱 相似文献
6.
7.
对中心波长为800 nm,脉宽为100 fs的激光脉冲烧蚀空气中硅(111)产生的等离子体发射光谱进行了时间和空间分辨研究. 结果表明,在等离子体羽膨胀初期(小于50 ns时间范围内),等离子体发射光谱主要由连续光谱构成,此后连续光谱强度逐渐减弱,线状光谱开始占主导地位;在羽体膨胀过程中离子谱线的存在时间短于原子谱线的存在时间. 由时间分辨发射光谱发现在羽体膨胀过程中等离子体辐射波长存在红移现象,波长红移量随时间演化呈二次指数衰减. 最后给出等离子体发射光谱谱线强度的时空演化规律.
关键词:
飞秒激光
脉冲激光烧蚀
等离子体
发射光谱 相似文献
8.
9.
飞秒激光能够在极短时间内烧蚀炸药产生高温高压等离子体。可以利用飞秒激光对含能材料或含能元器件进行精密加工。深入认识飞秒激光烧蚀炸药过程中,炸药内部的热效应是发展飞秒激光加工炸药技术的基础。建立了单脉冲飞秒激光烧蚀炸药过程的流固耦合计算模型,考虑了在高温高压等离子体和炸药自热反应的共同作用下,炸药内部的热效应。对飞秒激光烧蚀TNT炸药过程进行了流体力学数值模拟。计算结果表明:TNT炸药中未烧蚀区域产生了热效应,峰值温度高于TNT炸药的点火温度,但由于炸药内热效应区域极小,高温持续时间极短,因此炸药内温度迅速下降,没有发生点火现象。 相似文献
10.
11.
We describe the programmable spatial beam shaping of 100-kHz, 4-microJ amplified femtosecond pulses in a focal plane by wave-front modulation. Phase distributions are determined by a numerical iterative procedure. A nonpixelated optically addressed liquid-crystal light valve is used as a programmable wave-front tailoring device. Top-hat, doughnut, square, and triangle shapes of 20-microm size are obtained in a focal plane. Their suitability for femtosecond laser machining is demonstrated. 相似文献
12.
13.
Wonseok Chang Moojin Choi Jaegu Kim Sunghak Cho Kyunghyun Whang 《Applied Surface Science》2005,240(1-4):296-304
Standard positive photoresist techniques were adapted to generate sub-micron scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. Self-assembled monolayers formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists. The process underlying photopatterning of SAMs on gold is well-known at the phenomenological level. Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200 nm is necessary for oxidation to occur. In this study, solid state femtosecond laser of wavelength 800 nm is applied for photolithography. The results show that ultrafast laser of near infrared (NIR) range wavelength can replace deep UV laser source for photopatterning using thin organic films. The essential basis of our approach is the photochemical excitation of specific reactions in a particular functional group (in this case a thiolate sulfur atom) distributed with monolayer coverage on a solid surface. Femtosecond laser photolithography could be applied to fabricate the patterning of surface chemical structure and the creation of three-dimensional nanostructures by combination with suitable etching methods. 相似文献
14.
Optical trapping (also called optical tweezers) is a widespread technique, with a large number of applications in biology and other fields. Taking femtosecond laser pulses as a sampling of CW light, we theoretically demonstrate the feasibility of femtosecond laser tweezers and present the formulae of the induced forces which femtosecond laser pulses exert on micrometer-sized spheres. We also demonstrate the stability condition for femtosecond laser tweezers. As an example, we present the numerical results for a sphere with a radius of 10 mm. 相似文献
15.
Generating beams with a desired quadratic lateral intensity distribution using 1D binary masks was analyzed, in detail. Effect of width of the first bar as well as the gray scale increment rate on the generated shaped beam was examined. It is shown that increasing the gray scale rate produces smoother and broaden profile. Besides, it was demonstrated that width of the first bar has great impact on the generated profile, so by increasing the width, the generated profile becomes sharper. Theoretical results are confirmed by experiment, as well. 相似文献
16.
X Fang KW Ledingham P Graham DJ Smith T McCanny RP Singhal AJ Langley PF Taday 《Rapid communications in mass spectrometry : RCM》1999,13(14):1390-1397
The potential of femtosecond laser time-of-flight mass spectrometry (FLMS) for uniform quantitative analysis of molecules has been investigated. Various samples of molecular gases and vapours have been studied, using ultra-fast ( approximately 50 fs) laser pulses with very high intensity (up to 1.6 x 10(16) Wcm(-2)) for non-resonant multiphoton ionisation/tunnel ionisation. Some of these molecules have high ionisation potentials, requiring up to ten photons for non-resonant ionisation. The relative sensitivity factors (RSF) have been determined as a function of the laser intensity and it has been demonstrated that for molecules with very different masses and ionisation potentials, uniform ionisation has been achieved at the highest laser intensities. Quantitative laser mass spectrometry of molecules is therefore a distinct possibility. Copyright 1999 John Wiley & Sons, Ltd. 相似文献
17.
J.M. Fernández-Pradas D. SerranoS. Bosch J.L. MorenzaP. Serra 《Applied Surface Science》2011,257(12):5219-5222
The exclusive ability of laser radiation to be focused inside transparent materials makes lasers a unique tool to process inner parts of them unreachable with other techniques. Hence, laser direct-write can be used to create 3D structures inside bulk materials. Infrared femtosecond lasers are especially indicated for this purpose because a multiphoton process is usually required for absorption and high resolution can be attained. This work studies the modifications produced by 450 fs laser pulses at 1027 nm wavelength focused inside a photostructurable glass-ceramic (Foturan®) at different depths. Irradiated samples were submitted to standard thermal treatment and subsequent soaking in HF solution to form the buried microchannels and thus unveil the modified material. The voxel dimensions of modified material depend on the laser pulse energy and the depth at which the laser is focused. Spherical aberration and self-focusing phenomena are required to explain the observed results. 相似文献
18.
This paper numerically simulates the process of ablation of an aluminum target by an intense femtosecond laser with a fluence of 40 J/cm 2 based on the two-temperature equation,and obtains the evolution of the free electron temperature and lattice temperature over a large temporal and depth range,for the first time. By investigating the temporal evolution curves of the free electron temperature and lattice temperature at three representative depths of 0,100 nm and 500 nm,it reveals different characteristics and mechanisms of the free electron temperature evolution at different depths. The results show that,in the intense femtosecond laser ablation of aluminum,the material ablation is mainly induced by the thermal conduction of free electrons,instead of the direct absorption of the laser energy; in addition,the thermal conduction of free electrons and the coupling effect between electrons and lattice will induce the temperature of free electrons deep inside the target to experience a process from increase to decrease and finally to increase again. 相似文献
19.
V. M. Gordienko I. A. Makarov A. S. Khomenko M. A. Timofeev V. V. Tuchin 《Laser Physics》2009,19(6):1288-1293
Microspectral analysis of dentine plasma produced by femtosecond laser radiation with intensities of I ~ 1013?1015 W/cm2 in ambient atmosphere has been measured. C, O, Ca, Zn, Na, and Cu spectral lines were identified. The X-ray radiation with energies E > 30 keV has been observed upon laser beam intensities of I ~ 5 × 1015 W/cm2. 相似文献
20.
J. Bernhardt W. Liu F. Théberge H.L. Xu M. Châteauneuf S.L. Chin 《Optics Communications》2008,281(5):1268-1274
We report a spectroscopic analysis of a filament generated by a femtosecond laser pulse in air. In the filament spectra, the characteristic Stark broadened atomic oxygen triplet centered at 777.4 nm has been observed. The measured electron impact Stark broadening parameter of the triplet is larger than the theoretical value by Griem [H.R. Griem, Plasma Spectroscopy, McGraw Hill, New York, 1964] by a factor 6.7. Using the experimental value , the plasma densities derived from Stark broadening agree well with those most recently obtained from Théberge et al.’s measurement of the nitrogen fluorescence calibrated by longitudinal diffraction [F. Théberge, W. Liu, P.T. Simard, A. Becker, S. L. Chin, Phys. Rev. E 74 (2006) 036406]. However, the Stark broadening approach is much simpler and can be used to non-invasively measure the filament plasma density distribution in air under different propagation conditions. 相似文献