共查询到18条相似文献,搜索用时 62 毫秒
1.
本文采用市售纳米硅为硅源,以软化点低、得碳率高、价格便宜的煤沥青作为碳源,通过两步包覆法制备了煤沥青基硅/碳(Si/C/C)复合物,并研究其作为锂离子电池负极材料的电化学性能。 结果表明,所得复合物的粒径在300~350 nm间,Si纳米粒子被C包覆并相互连结成C-Si-C网络结构,其中Si含量为27%的硅/碳复合物(Si/C/C-27%)作为锂电池电极材料表现了良好的储锂性能。 在0.1 A/g的小电流密度下,Si/C/C-27%的放电比容量为1281 mA·h/g;在3 A/g的大电流密度下,其放电比容量仍能保持在582 mA·h/g,表现了良好的倍率性能。Si/C/C-27%在2 A/g的电流密度下经过100次的循环后其比容量保持率为76.61%,表现了良好的循环稳定性。 相比于煤沥青基碳的一次包覆所得的硅/碳复合材料(Si/C),Si/C/C有效提高了Si纳米粒子的导电性并抑制了其在嵌锂和脱锂过程中的体积膨胀。 本文提出的二次包覆的新方法为制备具有优异电化学性能的锂离子电池负极材料提供了新的研究思路。 相似文献
2.
通过硝酸锰和乙醇的水热反应在三聚氰胺泡棉(MF)上生成三氧化二锰颗粒,氮气下高温处理后形成锰氧化物负载碳氮三维网络结构的复合物。碳氮网络结构提高了充放电过程中材料结构的稳定性及导电性,且烧结过程中产生的孔道结构有利于锂离子传输,使得该复合材料作为负极在锂离子电池中表现出优异的充放电性能和循环稳定性。材料的比容量和循环稳定性大大提高,经500℃处理后的MnO/CNnws-500材料在160次循环后仍然保留590 m Ah·g~(-1)的比容量,达到氧化亚锰理论容量755 m Ah·g~(-1)的78%。 相似文献
3.
通过硝酸锰和乙醇的水热反应在三聚氰胺泡棉(MF)上生成三氧化二锰颗粒,氮气下高温处理后形成锰氧化物负载碳氮三维网络结构的复合物。碳氮网络结构提高了充放电过程中材料结构的稳定性及导电性,且烧结过程中产生的孔道结构有利于锂离子传输,使得该复合材料作为负极在锂离子电池中表现出优异的充放电性能和循环稳定性。材料的比容量和循环稳定性大大提高,经500℃处理后的MnO/CNnws-500材料在160次循环后仍然保留590 mAh·g-1的比容量,达到氧化亚锰理论容量755 mAh·g-1的78%。 相似文献
4.
5.
6.
钠离子电池锡负极因具有较高的理论容量(847 mA·h/g)、 高电导率和合适的工作电位而备受关注. 但锡基负极材料在循环过程中会发生巨大的结构变化, 进而导致活性材料粉化失活和比容量的快速下降. 本文成功制备了基于石墨氮化碳(g-C3N4)、 聚多巴胺衍生的氮掺杂碳(NC)和Sn纳米颗粒的复合物(g-C3N4/Sn/NC), 其中Sn纳米颗粒包埋在石墨氮化碳和氮掺杂碳中. 在此多层分级结构中, g-C3N4和NC的引入可以显著加速电子/离子的传输及电池反应动力学, 从而有助于Sn和钠离子之间的合金化反应; 此外, 这种复合结构有助于保持电极材料的结构稳定性, 进而可以获得优异的储钠性能. 作为钠离子电池负极材料, g-C3N4/Sn/NC在0.5 A/g电流密度下经历100次循环, 可逆容量可以达到450.7 mA·h/g; 在1.0 A/g电流密度下, 比容量为388.3 mA·h/g; 此外, 在1.0 A/g电流密度下, 经过400次循环后其比容量依旧能达到363.3 mA·h/g. 相似文献
7.
锂离子电池具有能量密度高和循环性好等优点, 广泛应用于小型移动设备等领域, 但尚不能满足需要兼具高容量和高倍率性能的应用要求. 以兼具高比表面积、氮含量高且可调、良好石墨化程度、多尺度分级结构(含孔结构)、有微孔通道的寡层笼壁结构等特征的氮掺杂碳纳米笼(NCNC)为锂离子电池负极材料, 展现出高的比容量、优异的倍率性能和稳定性, 譬如: 在0.1 A·g-1小电流密度下, NCNC800的循环稳定的充电比容量可以高达约900 mAh·g-1, 显著优于商业石墨; 在20.0 A·g-1大电流密度下, 循环500圈后的可逆比容量仍能稳定在约135 mAh·g-1. 如此优异的电化学性能可归因于NCNC的结构特征, 如高比表面积、良好石墨化程度、独特介观结构和孔结构, 这些特征有利于锂离子传输、电解液渗透和电子传导等. 这为开发高倍率和高比容量的锂离子电池负极材料提供思路. 相似文献
8.
磷的掺杂对碳负极材料性能的影响 总被引:2,自引:0,他引:2
研究了磷酸的引入对以聚丙烯腈为基体碳负极材料性能的影响.元素分析、XPS及XRD分析结果表明,磷在碳材料中与碳及氧原子相结合.磷酸的引入在较低的温度(600℃)下有利于聚丙烯腈-CN基的环化、脱氢碳化过程,使氮的含量及graphene氮的相对含量增加,磷的键合使碳材料的层间距反而增加,因此位于0.9V以上及以下的可逆容量均随磷酸的加入量的增加而增加,总的可逆容量高达524mAh/g.而在较高的温度(1000℃)下,碳化程度变化不大,主要表现为磷原子的掺杂效果,其引入使位于1.0V左右的可逆容量增加 相似文献
9.
以商业化的活性碳作为碳基体, 三聚氰胺作为氮源, 采用沉积法合成了N掺杂的碳磷复合材料. 材料的物性表征和电化学测试结果表明, 磷纳米球形颗粒均匀分散在氮掺杂的活性碳上, 有效增加了与电解液的接触面积, 同时P—C键的存在能稳定材料的结构, 当三聚氰胺的添加量为10%(质量分数)时, 氮掺杂的碳磷复合材料在室温及0.1C倍率首次充电比容量为2282.2 mA·h·g -1, 循环100次后充电比容量保持率为92.5%, 在5C倍率下首次充电比容量达到624.6 mA·h·g -1. 该复合材料在-10 ℃, 0.1C倍率下充电比容量为1128.2 mA·h·g -1, 在55 ℃, 0.1C倍率下首次充电比容量达到2060.5 mA·h·g -1, 表现出较好的电化学性能. 相似文献
10.
通过一步煅烧二维锌基配位聚合物[Zn(tfbdc)(4,4′-bpy)(H_2O)_2](H_2tfbdc=四氟对苯二甲酸;4,4′-bpy=4,4′-联吡啶),制备了氮掺杂碳/氧化锌复合纳米粒子(ZnO-N-C)。作为锂离子电池的负极材料,ZnO-N-C电极具有高的可逆容量,优异的循环稳定性和较好的倍率性能。在50 mA·g~(-1)的电流密度下,50次循环后ZnO-N-C电极仍有611 mAh·g~(-1)的可逆容量。 相似文献
11.
利用黄麻碳化后的纤维和吡咯单体作为还原剂,高锰酸钾作为氧化剂,通过原位氧化还原反应法合成了碳纤维/MnO/C一维复合物。扫描电子显微镜(SEM)结果显示,MnO/C纳米颗粒分布在碳纤维的外壁上,MnO被包裹在由聚吡咯碳化而来的碳中,MnO/C纳米颗粒大小为50~150 nm。将制备的产物作为锂离子电池负极材料进行充放电测试,结果表明当电流密度为100mA·g~(-1)时,循环50次后仍具有410 mAh·g~(-1)的比容量,同时也展现了良好的倍率性能。 相似文献
12.
Yuchen Xiao Anh N. Hong Dandan Hu Yanxiang Wang Prof. Xianhui Bu Prof. Pingyun Feng 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(71):16358-16365
Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized solvothermally by using cost- and waste-incurring organic solvents. Here, a direct synthesis method is reported for ZIF-8, ZIF-67, and their heterometallic versions from solid precursors only. This solvent-free crystallization method not only completely avoids organic solvents, but also provides an effective path for the synthesis of homogeneous mixed-metal ZIFs. Furthermore, under templating by NaCl/ZnCl2 eutectic salt, carbonization of the ZIF materials gives rise to a series of N-containing high-surface-area carbon materials with impressive catalytic properties for the oxygen reduction reaction. 相似文献
13.
Danny X. Liu Jinghui Wang Ke Pan Dr. Jie Qiu Prof. Marcello Canova Prof. Lei R. Cao Prof. Anne C. Co 《Angewandte Chemie (International ed. in English)》2014,53(36):9498-9502
A real‐time quantification of Li transport using a nondestructive neutron method to measure the Li distribution upon charge and discharge in a Li‐ion cell is reported. By using in situ neutron depth profiling (NDP), we probed the onset of lithiation in a high‐capacity Sn anode and visualized the enrichment of Li atoms on the surface followed by their propagation into the bulk. The delithiation process shows the removal of Li near the surface, which leads to a decreased coulombic efficiency, likely because of trapped Li within the intermetallic material. The developed in situ NDP provides exceptional sensitivity in the temporal and spatial measurement of Li transport within the battery material. This diagnostic tool opens up possibilities to understand rates of Li transport and their distribution to guide materials development for efficient storage mechanisms. Our observations provide important mechanistic insights for the design of advanced battery materials. 相似文献
14.
Ren Cai Dr. Yaping Du Wenyu Zhang Huiteng Tan Tao Zeng Xin Huang Hongfen Yang Chunping Chen Hai Liu Jixin Zhu Shengjie Peng Jing Chen Prof. Yuliang Zhao Prof. Haichen Wu Prof. Yizhong Huang Prof. Rong Xu Prof. Tuti Mariana Lim Prof. Qichun Zhang Prof. Hua Zhang Prof. Qingyu Yan 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(5):1568-1572
15.
16.
17.
Wenjie Zhang Jianlin Long Haijun Wang Jinle Lan Yunhua Yu Xiaoping Yang 《Molecules (Basel, Switzerland)》2022,27(21)
Polymer electrolytes (PEs) with high flexibility, low cost, and excellent interface compatibility have been considered as an ideal substitute for traditional liquid electrolytes for high safety lithium metal batteries (LMBs). Nevertheless, the mechanical strength of PEs is generally poor to prevent the growth of lithium dendrites during the charge/discharge process, which seriously restricts their wide practical applications. Herein, a mechanical robust ZIF-8/epoxy composite electrolyte with unique pore structure was prepared, which effectively inhibited the growth of lithium dendrites. Meanwhile, the in situ growth of ZIF-8 in porous epoxy matrix can promote the uniform flux and fast transport of lithium ions. Ultimately, the optimal electrolyte shows high ionic conductivity (2.2 × 10−3 S cm−1), wide electrochemical window (5 V), and a large Li+ transference number (0.70) at room temperature. The Li||NCM811 cell using the optimal electrolyte exhibits high capacity and excellent cycling performance (83.2% capacity retention with 172.1 mA h g−1 capacity retained after 200 cycles at 0.2 C). These results indicate that the ZIF-8/epoxy composite electrolyte is of great promise for the application in LMBs. 相似文献