首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 750 毫秒
1.
以含3,3'-二烯丙基双酚 A 结构单元的聚醚醚酮为基膜材料, 通过自由基加成反应在取代基上引入磺酸基团, 合成侧链型磺化聚醚醚酮(SPEEK)质子交换膜. 用傅里叶变换红外(FTIR)光谱、 核磁共振氢谱(1H NMR)、 热重分析(TG)和扫描电子显微镜(SEM)等方法对 SPEEK 的结构进行表征. 实验结果表明, 巯基丙磺酸被接枝在聚醚醚酮侧基上, SPEEK 膜具有明显的亲水疏水微相分离形貌, 磺酸基团相互聚集形成离子通道. SPEEK 膜离子交换容量为 2.12 mmol/g, 钒离子渗透率为 1.54×10-6 cm2/min, 低于Nafion117 膜的钒离子渗透率, 阻钒能力优于 Nafion117 膜. 以 SPEEK-4 膜组装电池的自放电时间约为130 h, 长于 Nafion117 膜的 66 h. 电池充放电循环 50 次, SPEEK-4 膜的库仑效率、 电压效率和能量效率没有明显降低, 显示出良好的稳定性.  相似文献   

2.
采用高温一步法合成了一系列不同磺化度的三元共聚磺化聚酰亚胺(SPI),通过控制磺化二胺与非磺化二胺的摩尔比来调节磺化度.选取碱性聚合物聚乙烯吡咯烷酮(PVP)与SPI按质量比1∶9进行共混,制成SPI/PVP酸碱复合膜.对复合膜的吸水率、离子交换容量、钒离子渗透率以及电池性能进行了测试.结果表明,随着磺化度的升高,复合膜的吸水率、离子交换容量、质子电导率升高以及钒离子渗透率升高.复合膜的隔膜选择性比Nafion117的选择性好,其中SPI/PVP-3的选择性是Nafion117的10倍.电池性能测试表明,随磺化度的升高,复合膜能量效率升高.其中SPI/PVP-3膜较Nafion117膜具有较高的库伦效率和能量效率,通过循环测试SPI/PVP-3膜性能稳定,充放电理想.  相似文献   

3.
本文报道了采用浓硫酸作为磺化剂,成功合成了不同磺化度下的聚醚醚酮(PEEK)膜,并深入研究了磺化条件包括磺化时间和磺化剂的用量对所获薄膜性能的影响,获得了在不同磺化度(DS)下SPPEK膜的离子交换容,含水率,机械性能,质子电导率等参数,特别测定了在全钒液流电池工作条件下钒离子(Ⅳ)渗透率,首次为该类液流储能电池使用价廉质优的质子交换膜提供了基础实验数据。室温条件下的实验结果如下:1)磺化12小时后,膜的磺化度46%,含水量为28%,钒离子(Ⅳ)选择性最佳(钒离子渗透率为1.2×10-7 cm2/min-1,是Nafion117 (2.9×10-6 cm2/min-1)的1/24),其质子电导率只有0.02 S/cm;2)磺化96小时其磺化度达79%的膜,质子电导率达0.16 S/cm,是Nafion117 (0.10S/cm) 的1.6倍, 但其机械性能最差;3)与Nafion117膜相比,磺化在36到48小时的SPPEK膜其机械力学性能好,薄膜的钒离子渗透率、离子交换容IEC、质子导电率和含水率高,且对钒离子的选择性佳,尤其价格仅为Nafion膜的1/13,是理想的Nafion膜的代替物,可望直接应用于全钒氧化还原液流(VRB)电池中。本文还讨论了磺化时间和不同磺化剂量对膜的性质的影响。  相似文献   

4.
乔宗文  陈涛 《应用化学》2019,36(8):917-923
在制备氯甲基化聚砜(CPS)的基础上,以1,2-二羟基苯-3,5-二磺酸钠为试剂,通过亲核取代反应制备一种侧链末端为磺酸基团的侧链型磺化聚砜(PS-BDS),并采用溶液浇注法制备相应的质子交换膜(PEM),研究温度对PEM性能的影响规律。 结果表明,由于亲水基团远离疏水聚合物主链,该PEM能够形成亲水微区远离疏水微区的相分离结构,亲水区域对主链的影响较小,该PEM在高磺化度下仍能保持较好的尺寸稳定性,随着温度的升高,PEM的吸水率(WU)、吸水溶胀率(SW)和质子传导率(PC)升高,其中PS-BDS-4(离子交换容量为1.57 mmol/g)在25和85 ℃时的SW仅为22.1%和55.0%,甲醇的渗透率(DK)仅为10.17×10-7 cm2/s,低于商业化的Nafion115(16.8×10-7 cm2/s)和Nafion117(23.8×10-7 cm2/s),表现出很好的综合性能。  相似文献   

5.
以含有异丙基溴侧基的聚醚醚酮为原子转移自由基聚合(ATRP)大分子引发剂,通过ATRP法在聚醚醚酮主链上接枝引入聚苯乙烯磺酸钠侧链,得到侧链型磺化聚醚醚酮质子交换膜(SSPEEK).采用溶液共混法在SSPEEK膜中引入钠基蒙脱土(Na-MMT),制备SSPEEK/Na-MMT钒电池质子交换复合膜.热重分析表明,复合膜具有较好的耐热性;扫描电镜显示,Na-MMT均匀分散在SSPEEK中.复合膜的钒离子渗透率由SSPEEK膜的1.24×10-5cm2·min-1降为4.88×10-6cm2·min-1,低于Nafion117膜的钒离子渗透率,阻钒能力优于Nafion117膜.电流密度为30 m A·cm-2时,以复合膜组装的电池的放电时间为215 min,长于Nafion117膜的198 min.在高放电电流密度下SSPEEK/Na-MMT膜的库伦效率与Nafion117膜相当.  相似文献   

6.
通过四元缩聚的方法合成了带有氨基的磺化度可控的磺化聚芳醚酮砜共聚物(Am-SPAEKS). 采用红外光谱和核磁共振谱表征了Am-SPAEKS共聚物的结构. 该共聚物膜具有较好的热性能、尺寸稳定性、较高的质子传导率和阻醇能力. 在80℃时Am-SPAEKS-1膜的质子传导率达到0.0894 S/cm, 而其甲醇渗透系数在25℃时为0.24×10-6 cm2/s, 低于相同温度下SPAEKS膜(0.87×10-6 cm2/s)和Nafion膜(2×10-6 cm2/s). 结果表明, Am-SPAEKS膜能够满足质子交换膜燃料电池(PEMFC)的使用要求.  相似文献   

7.
通过溶液流延法制备了磺化聚醚醚酮/锂皂石(SPEEK/Lap)复合膜, 对其物理化学性质、 机械性能、 化学稳定性及单电池性能进行了测试. 在SPEEK基质中引入的Lap有效改善了复合膜的质子传导率、 溶胀率和机械性能. 当Lap添加量(质量分数)从0.2%增到1.5%时, 复合膜的质子传导率随之增加(19.9~23.6 mS/cm). SPEEK/Lap-0.2复合膜的自放电时间为57.2 h, 是Nafion 117膜的2.4倍和纯SPEEK膜的1.5倍. 在80 mA/cm 2电流密度下, SPEEK/Lap-0.2复合膜的电压效率(VE, 86.5%)和能量效率(EE, 84.0%)明显高于Nafion 117膜(VE: 83.8%, EE: 80.7%)和纯SPEEK膜(VE: 81.4%, EE: 78.9%). 同时, SPEEK/Lap-0.2复合膜经100次充放电循环测试后具有良好的循环稳定性和结构稳定性.  相似文献   

8.
将磺化二氯二苯砜(SDCDPS)、二氯二苯砜(DCDPS)与4,4′-联苯酚(BP)通过亲核缩聚反应得到一系列具有不同磺化度的磺化聚芳醚砜(SPAES)共聚物.通过FT-IR,TGA和DSC等分析方法对其结构及性能进行表征.并用透射电镜对其内部形态进行分析,建立了结构与性能之间的关系.研究了不同磺化度对膜性能的影响.结果表明,聚合物中磺酸基团的增多导致了磺化聚芳醚砜膜的吸水率、离子交换容量、质子传导率和甲醇渗透系数的增加.通过对膜的综合性能评价发现,磺化度为0.8的磺化聚芳醚砜膜在80℃时的质子传导率为0.116S/cm,100℃时的质子传导率为0.126S/cm,均高于Nafion117膜(0.114S/cm和0.117S/cm),且甲醇渗透系数为8.4×10-7cm2/s,远远低于Nafion117膜(2.1×10-6cm2/s).  相似文献   

9.
质子交换膜对钒氧化还原液流电池性能的影响   总被引:10,自引:0,他引:10  
采用溶液接枝聚合法制备了一种新型的质子交换膜PVDF-g-PSSA, 测定了PVDF-g-PSSA膜、Nafion 117 膜和PE01均相膜的离子交换能力和电导率, 并分别研究了以这3种膜为隔膜的钒电池的电化学性能. 实验结果表明, PVDF-g-PSSA膜具有优良的质子电导率和离子交换能力, 室温下其离子交换能力和质子电导率分别为1.13 mmol/g和3.22×10-2 S/cm, 在不同的充放电电流密度下, 以PVDF-g-PSSA膜为隔膜的钒电池的库仑效率和能量效率明显高于Nafion 117膜和PE01均相膜为隔膜的钒电池; PVDF-g-PSSA膜阻钒离子的渗透性能与PE01均相膜基本一致, 都明显优于Nafion 117膜的阻钒离子渗透能力.  相似文献   

10.
刘璐  陈康成 《高分子学报》2020,(4):393-402,I0004
以不同摩尔比的4,4′-双(4-(2-苯基乙二酮基)苯氧基联苯、4,4′-双(2-苯基乙二酮基)二苯醚与3,3′,4,4′-四氨基联苯共聚制备聚喹喔啉,经后磺化法得到一系列磺化度可控的磺化聚苯基喹喔啉(SPPQ).模型化合物确认,磺酸基团精确接入电子云密度较高的含醚键的联苯片段的2,2′-位上,证明通过单体分子结构设计与后磺化法结合,可使磺酸基团在温和条件下,按预想接入到聚合物主链上,达到磺化度和磺化位置精确可控的目的. SPPQ的相对黏度均在3.8 dL/g以上.通过溶液涂膜法制备的主链型磺化聚苯基喹喔啉质子交换膜(SPPQ PEM)的吸水率都低于39%,尺寸变化率为2.1%~13%,且随着IEC和温度的提高而线性增加.如,80℃下,IEC高达2.21 meq/g的SPPQ-5的膜面和膜厚方向的尺寸变化率仅为11%和13%,具有良好的形状维持能力.热重分析表明,SPPQ PEM在320℃左右脱去磺酸基团,550℃左右发生聚合物主链降解,具有良好的热稳定性. Fenton试剂测试表明,SPPQ PEM开始破碎的时间随IEC的增加而缩短,在20℃时,IEC较低的SPPQ-1 (1.29 meq/g)破碎时间可达151 h,而IEC较高的SPPQ-5(2.21 meq/g)破碎时间缩短至81 h. PEM的质子传导率随温度和IEC的增加而显著提高,最高可达64 mS/cm,由于磺酸基团和喹喔啉酸碱对的形成以及吸水率偏低的原因,这一数值远低于Nafion.  相似文献   

11.
Three kinds of sulfonated poly(ether ether ketone) (SPEEK)/nano oxide (Al2O3, SiO2, and TiO2) composite membranes are fabricated for vanadium redox flow battery (VRFB) application. The composite membranes with 5 wt% of Al2O3, SiO2, and TiO2 (S/A-5 %, S/S-5 %, and S/T-5 %) exhibit excellent cell performance in VRFB. Incorporation of nano oxides (Al2O3, SiO2, and TiO2) in SPEEK membrane improves in aspect of thermal, mechanical, and chemical stabilities due to the hydrogen bonds’ interaction between SPEEK matrix and nano oxides. The energy efficiencies (EEs) of composite membranes are higher than that of Nafion 117 membrane, owing to the good balance between proton conductivity and vanadium ion permeability. The discharge–capacity retentions of composite membranes also overwhelm that of Nafion 117 membrane after 200 cycles, indicating their good stability in VRFB system. These low-cost SPEEK/nano oxide composite membranes exhibit great potential for the application in VRFB.  相似文献   

12.
将聚苯并咪唑(PBI)与聚乙烯吡咯烷酮(PVP)共混, 制备了一系列PBI/PVP复合质子交换膜, 研究了不同PVP含量对PBI/PVP复合质子交换膜性能的影响. 研究结果表明, PVP的加入可有效提高PBI/PVP复合质子交换膜的吸水率及硫酸吸附量, 从而提高质子电导率, 与PBI原膜相比, PBI-PVP-5复合质子交换膜的结合酸含量可达2.47 mmol/g, 质子电导率达4.81 mS/cm, 选择性(3.12×105 S·min/cm3)远高于原膜(1.12×105 S·min/cm3). 电流密度为120 mA/cm2时, 电池的电压效率(VE)和能量效率(EE)均较PBI原膜提高了10%, 电池自放电时间长达307 h. PVP的加入为PBI系列钒液流电池隔膜提供了一个提高质子电导率的新思路.  相似文献   

13.
Proton exchange membrane (PEM) is a key component of vanadium redox flow battery (VRB), and its proton/vanadium selectivity plays an important role in the performance of a VRB single cell. Commercially available perfluorosulfonic acid (Nafion) membranes have been widely used due to their excellent proton conductivity and favorable chemical resistance. However, the large pore size micelle channels formed by the pendant sulfonic acid groups lead to the excessive penetration of vanadium ions, which seriously affects the coulombic efficiency (CE) of the single cell and accelerates the self-discharge rate of the battery. Additionally, the expensive cost of Nafion is also an important reason to limit its large-scale application. In this paper, the dense and low-cost hydrocarbon polymer polybenzimidazole (PBI) is used as the matrix material of the PEM, which is doped with phosphotungstic acid (PWA) to acquire excellent proton conductivity, and the intrinsic high resistance of PBI for vanadium ions is helpful to obtain high proton/vanadium selectivity. Considering the enormous water solubility of PWA and its easy leaching from membrane, organic polymer nano-Kevlar fibers (NKFs) are utilized as the anchoring agent of PWA, which achieves good anchoring effect and solves the problem of the poor compatibility between inorganic anchoring agent and the polymer matrix. The formation of PWA functionalized NKFs was characterized by scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The anchoring stability of NKFs for PWA was evaluated by UV-Vis spectroscopy. The characterizations including water uptake, swelling ratio, ion exchange capacity, proton conductivity, vanadium ion permeability and ion selectivity were performed to evaluate the basic properties of the membranes. At the same time, the charge-discharge, self-discharge and cycle performance of single cell assembled with the composite membrane and recast Nafion were tested at various current densities from 40 to 100 mA∙cm-2. Simple tuning for the filling amount of NKFs@PWA gives the composite membrane superior ion selectivity including an optimal value of 3.26 × 105 S∙min∙cm-3, which is 8.5 times higher than that of recast Nafion (0.34 × 105 S∙min∙cm-3). As a result, the VRB single cell assembled with the composite membrane exhibits higher CE and significantly lower self-discharge rate compared with recast Nafion. Typically, the CE of the VRB based on PBI-(NKFs@PWA)-22.5% membrane is 97.31% at 100 mA∙cm-2 while the value of recast Nafion is only 90.28%. The open circuit voltage (VOC) holding time above 0.8 V of the single cell assembled with the composite membrane is 95 h, which is about 2.4 times as long as that of recast Nafion-based VRB. The utilization of PBI as a separator for VRB can effectively suppress the penetration of vanadium ions, achieve higher proton/vanadium selectivity and superior battery performance as well as reduce the cost of the PEM, which will play an active role in the promotion of VRB applications.  相似文献   

14.
Sulfonated polyimide (SPI) and ZrO2 are blended to prepare a series of novel SPI/ZrO2 composite membranes for vanadium redox flow battery (VRFB) application. Results of atomic force microscopy and X‐ray diffraction reveal that ZrO2 is successfully composited with SPI. All SPI/ZrO2 membranes possess high proton conductivity (2.96–3.72 × 10?2 S cm?1) and low VO2+ permeability (2.18–4.04 × 10?7 cm2 min?1). SPI/ZrO2‐15% membrane is determined as the optimum one on account of its higher proton selectivity and improved chemical stability. The VRFB with SPI/ZrO2‐15% membrane presents higher coulombic efficiency and energy efficiency than that with Nafion 117 membrane at the current density, which ranged from 20 to 80 mA cm?2. Cycling tests indicate that the SPI/ZrO2‐15% membrane has good operation stability in the VRFB system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A novel sulfonated diamine monomer, 4,6-bis(4-arninophenoxy)-naphthalene-2-sulfonic acid(BAPNS), was synthesized. A series of sulfonated polyimide copolymers was prepared from BAPNS, 1,4,5,8-naphthalenetetracarboxylic dianhydride(NTDA) and nonsulfonated diamine 4,4'-diaminodiphenyl ether(ODA). Flexible, transparent, and mechanically strong membranes were obtained. The novel sulfonated polyimide(SPI) membranes show higher conductivity, for example, SPI-100 shows a conductivity of 0.0698 S/cm at 80℃(SPI-X: Xrefers to molar fraction of BAPNS). The membranes exhibit the permeability of methanol from 2.18×10^-7 cm2/s to 2.57×10^-7 cm2/s, which is much lower than that of Nafion(2.00×10 6 cm^2/s). The copolymers were thermally stable up to 330℃. The sulfonated polyimide copolymers also show reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 100%(molar fraction) BAPNS is 1.35 GPa under high moisture condi- tions. The optimum concentration of BAPNS was found to be 100%(molar fraction) from the view point of proton conductivity, methanol permeability, and membrane stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号