首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggrega- tion continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanopar- ticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel.  相似文献   

2.
A mathematical study is developed for the electro-osmotic flow of a nonNewtonian fluid in a wavy microchannel in which a Bingham viscoplastic fluid model is considered. For electric potential distributions, a Poisson-Boltzmann equation is employed in the presence of an electrical double layer(EDL). The analytical solutions of dimensionless boundary value problems are obtained with the Debye-Huckel theory, the lubrication theory, and the long wavelength approximations. The effects of the Debyelen...  相似文献   

3.
The magnetohydrodynamic(MHD) mixed convection flow past a shrinking vertical sheet with thermal radiation is considered. Besides, the effects of Cu-Al2O3 nanoparticles and dust particles are considered. The similarity variables reduce the governing equations to the similarity equations, which are then solved numerically. The outcome shows that, for the shrinking case, the solutions are not unique. The rate of heat transfer and the friction factor enlarge with increasing the...  相似文献   

4.
对纳米流体在伸/缩楔体上的磁流体(MHD)流动进行了数值研究。首先,通过相似变换将控制偏微分方程转化为非线性常微分方程组;然后,利用Matlab软件,借助打靶法,结合四阶五常龙格库塔迭代方案进行数值求解;最后,详细讨论了各控制参数对无量纲速度、温度、浓度、表面摩擦系数、局部Nusselt数和局部Sherwood数的影响。结果表明,楔体在拉伸情况下只有唯一解,理论上不会出现边界层分离;而在一定收缩强度范围内存在双解,边界层流动在壁面处可能会出现边界层分离,壁面抽吸会使边界层分离推迟;楔体在拉伸情况下,磁场参数对表面摩擦系数的影响较大,对局部Nusselt数和局部Sherwood数的影响较小。  相似文献   

5.
A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal conductivity of the nanofluid, and such an increment of thermal conductivity can play an important role in improving the heat transfer rate of the base fluid. Further, the dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications...  相似文献   

6.
Forced convection heat transfer of ethylene glycol based nanofluid with Fe_3O_4 inside a porous medium is studied using the electric field. The control volume based finite element method(CVFEM) is selected for numerical simulation. The impact of the radiation parameter(R_d), the supplied voltage(?φ), the volume fraction of nanofluid(?), the Darcy number(Da), and the Reynolds number(Re) on nanofluid treatment is demonstrated. Results prove that thermal radiation increases the temperature gradient near the positive electrode. Distortion of isotherms increases with the enhance of the Darcy number and the Coulomb force.  相似文献   

7.
The present research article is devoted to studying the characteristics of Cattaneo-Christov heat and mass fluxes in the Maxwell nanofluid flow caused by a stretching sheet with the magnetic field properties. The Maxwell nanofluid is investigated with the impact of the Lorentz force to examine the consequence of a magnetic field on the flow characteristics and the transport of energy. The heat and mass transport mechanisms in the current physical model are analyzed with the modified versions of Fourier’s and Fick’s laws, respectively. Additionally, the well-known Buongiorno model for the nanofluids is first introduced together with the Cattaneo-Christov heat and mass fluxes during the transient motion of the Maxwell fluid. The governing partial differential equations (PDEs) for the flow and energy transport phenomena are obtained by using the Maxwell model and the Cattaneo-Christov theory in addition to the laws of conservation. Appropriate transformations are used to convert the PDEs into a system of nonlinear ordinary differential equations (ODEs). The homotopic solution methodology is applied to the nonlinear differential system for an analytic solution. The results for the time relaxation parameter in the flow, thermal energy, and mass transport equations are discussed graphically. It is noted that higher values of the thermal and solutal relaxation time parameters in the Cattaneo-Christov heat and mass fluxes decline the thermal and concentration fields of the nanofluid. Further, larger values of the thermophoretic force enhance the heat and mass transport in the nanoliquid. Moreover, the Brownian motion of the nanoparticles declines the concentration field and increases the temperature field. The validation of the results is assured with the help of numerical tabular data for the surface velocity gradient.  相似文献   

8.
The homogeneous and heterogeneous reactions in the boundary-layer of a flat surface are considered. The autocatalysts are assumed to be of regular sizes, while the solution is a dilute nanofluid. The heat release due to the chemical reactions is taken into account. The Buongiorno’s model is used to describe the behaviors of this reaction system. This configuration makes the current model be different from all previous publications. Multiple solutions are given numerically to the rescaled nonline...  相似文献   

9.
The unsteady laminar magnetohydrodynamics(MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse magnetic field with heat source/sink. The unsteady governing equations are solved by a shooting method with the Runge-KuttaFehlberg scheme. Three different types of water based nanofluids, containing copper, aluminium oxide, and titanium dioxide, are taken into consideration. The effects of the pertinent parameters on the fluid velocity, the temperature, the entropy generation number, the Bejan number, the shear stress, and the heat transfer rate at the sheet surface are graphically and quantitatively discussed in detail. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. It is observed that the presence of the metallic nanoparticles creates more entropy in the nanofluid flow than in the regular fluid flow.  相似文献   

10.
The problem of laminar fluid flow,which results from the stretching of a vertical surface with variable stream conditions in a nanofluid due to solar energy,is investigated numerically.The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of thermal stratification.The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations,namely,the scaling group of transformations.An exact solution is obtained for the translation symmetrys,and the numerical solutions are obtained for the scaling symmetry.This solution depends on the Lewis number,the Brownian motion parameter,the thermal stratification parameter,and the thermophoretic parameter.The conclusion is drawn that the flow field,the temperature,and the nanoparticle volume fraction profiles are significantly influenced by these parameters.Nanofluids have been shown to increase the thermal conductivity and convective heat transfer performance of base liquids.Nanoparticles in the base fluids also offer the potential in improving the radiative properties of the liquids,leading to an increase in the efficiency of direct absorption solar collectors.  相似文献   

11.
The viscous dissipation and heat transfer in the Darcy-Forchheimer flow by a rotating disk are examined. The partial slip conditions are invoked. The optimal series solutions are computed via the optimal homotopic analysis method(OHAM). The thermophoresis and Brownian motions are studied. The Darcy-Forchheimer relation characterizes the porous space. The roles of influential variables on the physical quantities are graphically examined. A reduction in the local Nusselt number is observed through thermophoresis and thermal slip parameters. The local Sherwood number depicts an increasing trend for the higher Brownian motion and concentration slip parameters.  相似文献   

12.
We consider the combined effect of the magnetic field and heat transfer inside a square cavity containing a hybrid nanofluid(Cu-Al_2O_3-water). The upper and bottom walls of the cavity have a wavy shape. The temperature of the vertical walls is lower,the third part in the middle of the bottom wall is kept at a constant higher temperature,and the remaining parts of the bottom wall and the upper wall are thermally insulated.The magnetic field is applied under the angle γ, an opposite clockwise direction. For the numerical simulation, the finite element technique is employed. The ranges of the characteristics are as follows: the Rayleigh number(10~3≤Ra≤10~5), the Hartmann number(0≤Ha≤100), the nanoparticle hybrid concentration(?_(Al_2O_3),?_(Cu) = 0, 0.025, 0.05),the magnetic field orientation(0≤γ≤2π), and the Prandtl number P_r, the amplitude of wavy cavity A, and the number of waviness n are fixed at P_r = 7, A = 0.1, and n = 3, respectively. The comparison with a reported finding in the open literature is done,and the data are observed to be in very good agreement. The effects of the governing parameters on the energy transport and fluid flow parameters are studied. The results prove that the increment of the magnetic influence determines the decrease of the energy transference because the conduction motion dominates the fluid movement. When the Rayleigh number is raised, the Nusselt number is increased, too. For moderate Rayleigh numbers, the maximum ratio of the heat transfer takes place for the hybrid nanofluid and then the Cu-nanofluid, followed by the Al_2O_3-nanofluid. The nature of motion and energy transport parameters has been scrutinized.  相似文献   

13.
A numerical analysis is provided to scrutinize time-dependent magnetohydrodynamics(MHD) free and forced convection of an electrically conducting non-Newtonian Casson nanofluid flow in the forward stagnation point region of an impulsively rotating sphere with variable wall temperature. A single-phase flow of nanofluid model is reflected with a number of experimental formulae for both effective viscosity and thermal conductivity of nanofluid. Exceedingly nonlinear governing partial differential equations(PDEs)subject to their compatible boundary conditions are mutated into a system of nonlinear ordinary differential equations(ODEs). The derived nonlinear system is solved numerically with implementation of an implicit finite difference procedure merging with a technique of quasi-linearization. The controlled parameter impacts are clarified by a parametric study of the entire flow regime. It is depicted that from all the exhibited nanoparticles,Cu possesses the best convection. The surface heat transfer and surface shear stresses in the x-and z-directions are boosted with maximizing the values of nanoparticle solid volume fraction ? and rotation λ. Besides, as both the surface temperature exponent n and the Casson parameter γ upgrade, an enhancement of the Nusselt number is given.  相似文献   

14.
The present study concerns the modelization and numerical simulation for the heat and flow exchange characteristics in a novel configuration saturated with a nonNewtonian Ag-MgO hybrid nanofluid. The wavy shaped enclosure is equipped with onequarter of a conducting solid cylinder. The system of equations resulting from the mathematical modeling of the physical problem in its dimensionless form is discretized via the higher-order Galerkin-based finite element method(GFEM). The dependency of vario...  相似文献   

15.
16.
The two-layer modeling approach has become one of the most promising and successful methodology for simulating turbulent boundary layers in the past ten years. In the present study, a mixed wall model for large-eddy simulations (LES) of high-speed flows is proposed which combine two approaches; the thin-Boundary Layer Equations (TBLE) model of Kawai and Larsson (1994) and the analytical wall-layer model of Duprat et al. (2011) for streamwise pressure gradients. The new hybrid model has been efficiently implemented into a three-dimensional compressible LES solver and validated against DNS of a spatially-evolving supersonic boundary layer (BL) under moderate and strong pressure gradients, before being employed for the prediction of nozzle flow separations at different flow conditions, ranging from weakly to highly over-expanded regimes. A good agreement is obtained in terms of mean and fluctuating quantities compared to the DNS results. Particularly, the current wall-modeled LES results are found to perfectly match the DNS data of supersonic BL with/out pressure gradient. It is also shown that the model can account for the effect of the large-scale turbulent motions of the outer layer, indicating a good interaction between the inner and the outer part of the wall layer. In terms of simulations costs and improvements of computing power, the obtained results highlight the capability of the current wall-modeling LES strategy in saving a considerable amount of computational time compared to the wall-resolved LES counterpart, allowing to push further the simulations limits. Furthermore, the application of these computationally low-costly LES simulations to nozzle flow separation allows to clearly identify the origin of the shock unsteadiness, and the existence of broadband and energetically-significant low-frequency oscillations (LFO) in the vicinity of the separation region.  相似文献   

17.

The purpose of this investigation is to theoretically shed some light on the effect of the unsteady electroosmotic flow (EOF) of an incompressible fractional second-grade fluid with low-dense mixtures of two spherical nanoparticles, copper, and titanium. The flow of the hybrid nanofluid takes place through a vertical micro-channel. A fractional Cattaneo model with heat conduction is considered. For the DC-operated micropump, the Lorentz force is responsible for the pressure difference through the microchannel. The Debye-Hükel approximation is utilized to linearize the charge density. The semi-analytical solutions for the velocity and heat equations are obtained with the Laplace and finite Fourier sine transforms and their numerical inverses. In addition to the analytical procedures, a numerical algorithm based on the finite difference method is introduced for the given domain. A comparison between the two solutions is presented. The variations of the velocity heat transfer against the enhancements in the pertinent parameters are thoroughly investigated graphically. It is noticed that the fractional-order parameter provides a crucial memory effect on the fluid and temperature fields. The present work has theoretical implications for biofluid-based microfluidic transport systems.

  相似文献   

18.
The microfluidic system is a multi-physics interaction field that has attracted great attention. The electric double layers and electroosmosis are important flow-electricity interaction phenomena. This paper presents a thickness-averaged model to solve three-dimensional complex electroosmotic flows in a wide-shallow microchannel/chamber combined (MCC) chip based on the Navier-Stokes equations for the flow field and the Poisson equation to the electric field. Behaviors of the electroosmotic flow, the electric field, and the pressure are analyzed. The quantitative effects of the wall charge density (or the zeta potential) and the applied electric field on the electroosmotic flow rate are investigated. The two-dimensional thickness-averaged flow model greatly simplifies the three-dimensional computation of the complex electroosmotic flows, and correctly reflects the electrookinetic effects of the wall charge on the flow. The numerical results indicate that the electroosmotic flow rate of the thickness-averaged model agrees well with that of the three-dimensional slip-boundary flow model. The flow streamlines and pressure distribution of these two models are in qualitative agreement.  相似文献   

19.
Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transformation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The obtained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta- Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.  相似文献   

20.
The objective of this work is to estimate the accuracy of a predicted velocity profile which can be gained from experimental results, in comparison with the exact ones by the methodology of entropy generation. The analysis is concerned with the entropy generation rate in hydrodynamic, steady, laminar, and incompressible flow for Newtonian fluids in the insulated channels of arbitrary cross section. The entropy generation can be calculated from two local and overall techniques. Adaptation of the results of these techniques depends on the used velocity profile. Results express that in experimental works, whatever the values of local and overall entropy generation rates are close to each other, the results are more accuracy. In order to extent the subject, different geometries have been investigated. Also, the influence studied, and the distribution of volumetric geometries is drawn. of geometry on the entropy generation rate is local entropy generation rate for the selected geometries is drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号