首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
The Lagrangian smoothed particle hydrodynamics (SPH) method is employed to obtain a meso-/micro-scopic pore-scale insight into the transverse flow across the randomly aligned fibrous porous media in a 2D domain. Fluid is driven by an external body force, and a square domain with periodic boundary conditions imposed at both the streamwise and transverse flow direction is assumed. The porous matrix is established by randomly embedding a certain number of fibers in the square domain. Fibers are represented by position-fixed SPH particles, which exert viscous forces upon, and contribute to the density variations of, the nearby fluid particles. An additional repulsive force, similar in form to the 12-6 Lennard-Jones potential between atoms, is introduced to consider the no-penetrating restraint prescribed by the solid pore structure. This force is initiated from the fixed solid material particle and may act on its neighboring moving fluid particles. Fluid flow is visualized by plotting the local velocity vector field; the meandering fluid flow around the porous microstructures always follow the paths of least resistance. The simulated steady-state flow field is further used to calculate the macroscopic permeability. The dimensionless permeability (normalized by the squared characteristic dimension of the fiber cross section) exhibits an exponential dependence on the porosity within the intermediate porosity range, and the derived dimensionless permeability—porosity relation is found to have only minor dependence on either the relative arrangement condition among fibers or the fiber cross section (shape or area).  相似文献   

2.
The vibration method represents a practical method for the measurement of adhesion forces and adhesion force distributions. This method causes sinusoidally altemating stresses and yields detachment and contact forces between particles and substrate of the same order of magnitude. Alternating contact forces of the vibration method can cause an adhesion force intensification through flattening of asperities. The measuring principle of the vibration method and the analysis of experimental results are described in the article. Normal adhesion forces (pull-off forces) are measured using the vibration method and the colloidal probe technique. The results of both methods show good agreement for small particle sizes. The influence of the detachment force direction is shown by comparing tangential and normal adhesion forces measured using particle reentrainment in a turbulent air flow and the vibration method, respectively. The surface roughness of the substrate and the relative humidity are shown to significantly influence the measured adhesion forces. For the calculation of the adhesion forces, an approach by Rabinovich was combined with approximations of plastic micro asperity flattening. The Rabinovich approach accounts for roughness effects on the van der Waals force by incorporating the rms roughness of the interacting surfaces. rms-values of the particles and substrates were measured with atomic force microscopy at different scanning areas.  相似文献   

3.
Surface tension plays a significant role at the dynamic interface of free‐surface flows especially at the microscale in capillary‐dominated flows. A model for accurately predicting the formation of two‐dimensional viscous droplets in vacuum or gas of negligible density and viscosity resulting from axisymmetric oscillation due to surface tension is solved using smoothed particle hydrodynamics composed of the Navier‐Stokes system and appropriate interfacial conditions for the free‐surface boundaries. The evolution of the droplet and its free‐surface interface is tracked over time to investigate the effects of surface tension forces implemented using a modified continuous surface force method and is compared with those performed using interparticle interaction force. The dynamic viscous fluid and surface tension interactions are investigated via a controlled curvature model and test cases of nonsteady oscillating droplets; attention is focused here on droplet oscillation that is released from an initial static deformation. Accuracy of the results is attested by demonstrating that (i) the curvature of the droplet that is controlled; (ii) uniform distribution of fluid particles; (iii) clean asymmetric forces acting on the free surface; and (iv) nonsteady oscillating droplets compare well with analytical and published experiment findings. The advantage of the proposed continuous surface force method only requires the use of physical properties of the fluid, whereas the interparticle interaction force method is restricted by the requirement of tuning parameters.  相似文献   

4.
Well-acknowledged problems associated with modeling the history force in large, many-particle simulations are related to the need to store and integrate over the entire lifetime of the particle. To address this concern, a computationally efficient method for calculating the history force (the “window model”) was developed based on the assumption of weak changes in acceleration in the recent relevant history of the particle. This assumption leads to the design of a model with a truncated integration interval which requires storage of and integration over a much shorter period of the particle’s history compared to other history force models. The truncation of the integration window can yield more than an order of magnitude savings in CPU time. In a related study, the two empirical coefficients of the Mei & Adrian history force kernel have been optimized (based on comparison with experimental data for falling particles) to give improved predictions of the data. Both the new history force kernel and the window model have been investigated for a large range of experimental data yielding, to the authors’ knowledge, the most extensive comparison yet conducted. For falling particles, the new history force kernel shows good predictions for particle Reynolds numbers ranging from 9 to 853 and density ratios from 1.17 to 9.32. Good predictions were also obtained using the window model when changes in particle relative acceleration over the window period were modest. For particles under forced oscillating in a quiescent fluid, the history kernel was generally reasonable but did not predict the peak forces well in all cases. This may be explained by noting that the assumption of a t−2 long-time dependence for the finite Reynolds number history force kernel may become invalid during rapid deceleration and wake ingestion (which can lead to exponential or t−1 behavior). However, the finite Reynolds number kernel gives better predictions in all cases than those made using the Basset history force. The window model was only reasonable for the oscillating particle cases when the changes in the relative particle acceleration over the integration window were small.  相似文献   

5.
The research on the coupling method of non-spherical granular materials and fluids aims to predict the particle–fluid interaction in this study. A coupling method based on superquadric elements is developed to describe the interaction between non-spherical solid particles and fluids. The discrete element method (DEM) and the smoothed particle hydrodynamics (SPH) are adopted to simulate granular materials and fluids. The repulsive force model is adopted to calculate the coupling force and then a contact detection method is established for the interaction between the superquadric element and the fluid particle. The contact detection method captures the shape of superquadric element and calculates the distance from the fluid particle to the surface of superquadric element. Simulation cases focusing on the coupling force model, energy transfer, and large-scale calculations have been implemented to verify the validity of the proposed coupling method. The coupling force model accurately represents the water entry process of a spherical solid particle, and reasonably reflects the difference of solid particles with different shapes. In the water entry process of multiple solid particles, the total energy of the water entry process of multiple solid particles tends to be stable. The collapse process of the partially submerged granular column is simulated and analyzed under different parameters. Therefore, this coupling method is suitable to simulate fluid–particle systems containing solid particles with multiple shapes.  相似文献   

6.
A new method for the simulation of the translational and rotational motions of a system containing a sedimenting particle interacting with a neutrally buoyant particle has been developed. The method is based on coupling the quasi-static Stokes equations for the fluid with the rigid body equations of motion for the particles. The Stokes equations are solved at each time step with the boundary element method. The stresses are then integrated over the surface of each particle to determine the resultant forces and moments. These forces and moments are inserted into the rigid body equations of motion to determine the translational and rotational motions of the particles. Unlike many other simulation techniques, no restrictions are placed on the shape of the particles. Superparametric boundary elements are employed to achieve accurate geometric representations of the particles. The simulation method is able to predict the local fluid velocity, resolve the forces and moments exerted on the particles, and track the particle trajectories and orientations.  相似文献   

7.
A generalized mass transfer law for dilute dispersion of particles (or droplets) of any sizes suspended in a fluid has been described, which can be applied to turbulent or laminar flow. The generalized law reduces to the Fick’s law of diffusion in the limit of very small particles. Thus the study shows how the well-known and much-used Fick’s law of diffusion fits into the broader context of particle transport. The general expression for particle flux comprises a diffusive flux due to Brownian motion and turbulent fluctuation, a diffusive flux due to temperature gradient (thermophoresis plus stressphoresis) and a convective flux that arises primarily due to the interaction of particle inertia and the inhomogeneity of the fluid turbulence field (turbophoresis). Shear-induced lift force, electrical force, gravity, etc. also contribute to the convective flux. The present study includes the effects of surface roughness, and the calculations show that the presence of small surface roughness even in the hydraulically smooth regime significantly enhances deposition especially of small particles. Thermophoresis can have equally strong effects, even with a modest temperature difference between the wall and the bulk fluid. For particles of the intermediate size range, turbophoresis, thermophoresis and roughness are all important contributors to the overall deposition rate. The paper includes a parametric study of the effects of electrostatic forces due to mirror charging. The present work provides a unified framework to determine the combined effect of various particle transport mechanisms on mass transfer rate and the inclusion of other mechanisms not considered in this paper is possible.  相似文献   

8.
Smoluchowski kinetic equation governing the time evolution of the pair correlation function of rigid sphericalparticles suspended in a Newtonian fluid is extended to include particle migration. The extended kinetic equation takes into account three types of forces acting on the suspended particles: a direct force generated by an interparticle potential, hydrodynamic force mediated by the host fluid, and the Faxén-type forces bringing about the across-the-streamline particle migration. For suspensions subjected to externally imposed flows, the kinetic equation is solved numerically by the proper generalized decomposition method. The imposed flow investigated inthe numerical illustrations is the Poiseuille flow. Numerical solutions provide the morphology (the pair correlation function), the rheology (the stress tensor), and the particle migration.  相似文献   

9.
Y.Q. Feng  A.B. Yu 《Particuology》2008,6(6):549-556
The dynamic behavior of individual particles during the mixing/segregation process of particle mixtures in a gas fluidized bed is analyzed. The analysis is based on the results generated from discrete particle simulation, with the focus on the trajectory of and forces acting on individual particles. Typical particles are selected representing three kinds of particle motion: a flotsam particle which is initially at the bottom part of the bed and finally fluidized at the top part of the bed; a jetsam particle which is initially at the top part of the bed and finally stays in the bottom de-fluidized layer of the bed; and a jetsam particle which is intermittently joining the top fluidized and bottom de-fluidized layers. The results show that the motion of a particle is chaotic at macroscopic or global scale, but can be well explained at a microscopic scale in terms of its interaction forces and contact conditions with other particles, particle-fluid interaction force, and local flow structure. They also highlight the need for establishing a suitable method to link the information generated and modeled at different time and length scales.  相似文献   

10.
土体颗粒物流动是一种典型的大变形破坏,具有非牛顿流体的流动特征。准确模拟土体颗粒物的流动及冲击过程,对滑坡和泥石流等地质灾害的防治具有重要意义。物质点法是一种无网格粒子类方法,已在各类大变形问题中得到了广泛应用。以往土体颗粒物流动的模拟,通常采用弹塑性本构模型,但缺乏对非牛顿本构模型的模拟分析。本文引入非牛顿本构模型的模拟分析,旨在为土体颗粒物流动模拟提供一种新的方法与思路。非牛顿本构模型的模拟分析是将非牛顿广义Cross模型引入三维物质点法,通过人工阻尼力模拟颗粒间的摩擦力,对土体颗粒物的坍塌、沿斜面滑动以及冲击障碍物等问题进行了动态模拟,研究了其运动全过程,并与弹塑性本构模型的模拟结果进行了对比验证。结果表明,基于非牛顿流体本构模型的物质点法可以较好地模拟土体颗粒物加速、减速到再次稳定的流动全过程及其对障碍物的冲击效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号