首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
The present research article is devoted to studying the characteristics of Cattaneo-Christov heat and mass ?uxes in the Maxwell nano?uid ?ow caused by a stretching sheet with the magnetic ?eld properties. The Maxwell nano?uid is investigated with the impact of the Lorentz force to examine the consequence of a magnetic ?eld on the?ow characteristics and the transport of energy. The heat and mass transport mechanisms in the current physical model are analyzed with the modi?ed versions of Fourier's and Fick's laws, respectively. Additionally, the well-known Buongiorno model for the nano?uids is ?rst introduced together with the Cattaneo-Christov heat and mass ?uxes during the transient motion of the Maxwell ?uid. The governing partial di?erential equations(PDEs) for the ?ow and energy transport phenomena are obtained by using the Maxwell model and the Cattaneo-Christov theory in addition to the laws of conservation.Appropriate transformations are used to convert the PDEs into a system of nonlinear ordinary di?erential equations(ODEs). The homotopic solution methodology is applied to the nonlinear di?erential system for an analytic solution. The results for the time relaxation parameter in the ?ow, thermal energy, and mass transport equations are discussed graphically. It is noted that higher values of the thermal and solutal relaxation time parameters in the Cattaneo-Christov heat and mass ?uxes decline the thermal and concentration ?elds of the nano?uid. Further, larger values of the thermophoretic force enhance the heat and mass transport in the nanoliquid. Moreover, the Brownian motion of the nanoparticles declines the concentration ?eld and increases the temperature ?eld.The validation of the results is assured with the help of numerical tabular data for the surface velocity gradient.  相似文献   

2.
A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal conductivity of the nanofluid, and such an increment of thermal conductivity can play an important role in improving the heat transfer rate of the base fluid. Further, the dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications...  相似文献   

3.
The vibration suppression analysis of a simply-supported laminated composite beam with magnetostrictive layers resting on visco-Pasternak’s foundation is presented.The constant gain distributed controller of the velocity feedback is utilized for the purpose of vibration damping.The formulation of displacement field is proposed according to Euler-Bernoulli’s classical beam theory(ECBT),Timoshenko’s first-order beam theory(TFBT),Reddy’s third-order shear deformation beam theory,and the simple sinu...  相似文献   

4.
Forced convection heat transfer of ethylene glycol based nanofluid with Fe_3O_4 inside a porous medium is studied using the electric field. The control volume based finite element method(CVFEM) is selected for numerical simulation. The impact of the radiation parameter(R_d), the supplied voltage(?φ), the volume fraction of nanofluid(?), the Darcy number(Da), and the Reynolds number(Re) on nanofluid treatment is demonstrated. Results prove that thermal radiation increases the temperature gradient near the positive electrode. Distortion of isotherms increases with the enhance of the Darcy number and the Coulomb force.  相似文献   

5.
A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Different from the previous studies on two-layer channel flow of a nanofluid,the present paper introduces the flux conservation conditions for the nanoparticle volume fraction field,which makes this work new and unique,and it is in coincidence with practical observations.The governing equations are reduced into a group of ordinary differential equations via appropriate similarity transformations.The highly accurate analytical approximations are obtained.Important physical quantities and total entropy generation are analyzed and discussed.A comparison is made to determine the significance of electrical double layer(EDL)effects in the presence of an external electric field.It is found that the Brownian diffusion,the thermophoresis diffusion,and the viscosity have significant effects on altering the flow behaviors.  相似文献   

6.
The exact solution of the bending of a thick rectangular plate with three clamped edges and one free edge under a uniform transverse load is obtained by means of the concept of generalized simply-supported boundary[1] in Reissner’s theory of thick plates. The effect of the thickness h of a plate on the bending is studied and the applicable range of Kirchhoffs theory for bending of thin plates is considered.  相似文献   

7.
8.
The boundary layer flow of a nanofluid past a stretching/shrinking sheet with hydrodynamic and thermal slip boundary conditions is studied. Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the skin friction coefficient, the local Nusselt number, and the local Sherwood number as well as the velocity, temperature, and concentration profiles for some values of the velocity slip parameter, thermal slip parameter, stretching/shrinking parameter, thermophoresis parameter, and Brownian motion parameter. The results show that the local Nusselt number, which represents the heat transfer rate, is lower for higher values of thermal slip parameter, thermophoresis parameter, and Brownian motion parameter.  相似文献   

9.
The problem of laminar fluid flow,which results from the stretching of a vertical surface with variable stream conditions in a nanofluid due to solar energy,is investigated numerically.The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of thermal stratification.The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations,namely,the scaling group of transformations.An exact solution is obtained for the translation symmetrys,and the numerical solutions are obtained for the scaling symmetry.This solution depends on the Lewis number,the Brownian motion parameter,the thermal stratification parameter,and the thermophoretic parameter.The conclusion is drawn that the flow field,the temperature,and the nanoparticle volume fraction profiles are significantly influenced by these parameters.Nanofluids have been shown to increase the thermal conductivity and convective heat transfer performance of base liquids.Nanoparticles in the base fluids also offer the potential in improving the radiative properties of the liquids,leading to an increase in the efficiency of direct absorption solar collectors.  相似文献   

10.
A numerical analysis is provided to scrutinize time-dependent magnetohydrodynamics(MHD) free and forced convection of an electrically conducting non-Newtonian Casson nanofluid flow in the forward stagnation point region of an impulsively rotating sphere with variable wall temperature. A single-phase flow of nanofluid model is reflected with a number of experimental formulae for both effective viscosity and thermal conductivity of nanofluid. Exceedingly nonlinear governing partial differential equations(PDEs)subject to their compatible boundary conditions are mutated into a system of nonlinear ordinary differential equations(ODEs). The derived nonlinear system is solved numerically with implementation of an implicit finite difference procedure merging with a technique of quasi-linearization. The controlled parameter impacts are clarified by a parametric study of the entire flow regime. It is depicted that from all the exhibited nanoparticles,Cu possesses the best convection. The surface heat transfer and surface shear stresses in the x-and z-directions are boosted with maximizing the values of nanoparticle solid volume fraction ? and rotation λ. Besides, as both the surface temperature exponent n and the Casson parameter γ upgrade, an enhancement of the Nusselt number is given.  相似文献   

11.
The present research article is devoted to studying the characteristics of Cattaneo-Christov heat and mass fluxes in the Maxwell nanofluid flow caused by a stretching sheet with the magnetic field properties. The Maxwell nanofluid is investigated with the impact of the Lorentz force to examine the consequence of a magnetic field on the flow characteristics and the transport of energy. The heat and mass transport mechanisms in the current physical model are analyzed with the modified versions of Fourier’s and Fick’s laws, respectively. Additionally, the well-known Buongiorno model for the nanofluids is first introduced together with the Cattaneo-Christov heat and mass fluxes during the transient motion of the Maxwell fluid. The governing partial differential equations (PDEs) for the flow and energy transport phenomena are obtained by using the Maxwell model and the Cattaneo-Christov theory in addition to the laws of conservation. Appropriate transformations are used to convert the PDEs into a system of nonlinear ordinary differential equations (ODEs). The homotopic solution methodology is applied to the nonlinear differential system for an analytic solution. The results for the time relaxation parameter in the flow, thermal energy, and mass transport equations are discussed graphically. It is noted that higher values of the thermal and solutal relaxation time parameters in the Cattaneo-Christov heat and mass fluxes decline the thermal and concentration fields of the nanofluid. Further, larger values of the thermophoretic force enhance the heat and mass transport in the nanoliquid. Moreover, the Brownian motion of the nanoparticles declines the concentration field and increases the temperature field. The validation of the results is assured with the help of numerical tabular data for the surface velocity gradient.  相似文献   

12.
Hayat  T.  Muhammad  K.  Alsaedi  A. 《应用数学和力学(英文版)》2021,42(12):1787-1798

The melting phenomenon in two-dimensional (2D) flow of fourth-grade material over a stretching surface is explored. The flow is created via a stretching surface. A Darcy-Forchheimer (D-F) porous medium is considered in the flow field. The heat transport is examined with the existence of the Cattaneo-Christov (C-C) heat flux. The fourth-grade material is electrically conducting subject to an applied magnetic field. The governing partial differential equations (PDEs) are reduced into ordinary differential equations (ODEs) by appropriate transformations. The solutions are constructed analytically through the optimal homotopy analysis method (OHAM). The fluid velocity, temperature, and skin friction are examined under the effects of various involved parameters. The fluid velocity increases with higher material parameters and velocity ratio parameter while decreases with higher magnetic parameter, porosity parameter, and Forchheimer number. The fluid temperature is reduced with higher melting parameter while boosts against higher Prandtl number, magnetic parameter, and thermal relaxation parameter. Furthermore, the skin friction coefficient decreases against higher melting and velocity ratio parameters while increases against higher material parameters, thermal relaxation parameter, and Forchheimer number.

  相似文献   

13.
The second-grade fluid flow due to a rotating porous stretchable disk is modeled and analyzed. A porous medium is characterized by the Darcy relation. The heat and mass transport are characterized through Cattaneo-Christov double diffusions. The thermal and solutal stratifications at the surface are also accounted. The relevant nonlinear ordinary differential systems after using appropriate transformations are solved for the solutions with the homotopy analysis method (HAM). The effects of various involved variables on the temperature, velocity, concentration, skin friction, mass transfer rate, and heat transfer rate are discussed through graphs. From the obtained results, decreasing tendencies for the radial, axial, and tangential velocities are observed. Temperature is a decreasing function of the Reynolds number, thermal relaxation parameter, and Prandtl number. Moreover, the mass diffusivity decreases with the Schmidt number.  相似文献   

14.
In this paper, the mechanism of thermal energy transport in swirling flow of the Maxwell nanofluid induced by a stretchable rotating cylinder is studied. The rotation of the cylinder is kept constant in order to avoid the induced axially secondary flow. Further, the novel features of heat generation/absorption, thermal radiation, and Joule heating are studied to control the rate of heat transfer. The effects of Brownian and thermophoretic forces exerted by the Maxwell nanofluid to the transport ...  相似文献   

15.
The role of the Cattaneo-Christov heat flux theory in the two-dimensional laminar flow of the Jeffrey liquid is discussed with a vertical sheet. The salient feature in the energy equation is accounted due to the implementation of the Cattaneo-Christov heat flux. A liquid with variable thermal conductivity is considered in the Darcy-Forchheimer porous space. The mathematical expressions of momentum and energy are coupled due to the presence of mixed convection. A highly nonlinear coupled system of equations is tackled with the homotopic algorithm. The convergence of the homotopy expressions is calculated graphically and numerically. The solutions of the velocity and temperature are expressed for various values of the Deborah number, the ratio of the relaxation time to the retardation time, the porosity parameter, the mixed convective parameter, the Darcy-Forchheimer parameter, and the conductivity parameter. The results show that the velocity and temperature are higher in Fourier's law of heat conduction cases in comparison with the Cattaneo-Christov heat flux model.  相似文献   

16.
This paper studies stratified magnetohydrodynamic(MHD) flow of tangent hyperbolic nanofluid past an inclined exponentially stretching surface. The flow is subjected to velocity, thermal, and solutal boundary conditions. The partial differential systems are reduced to ordinary differential systems using appropriate transformations.The reduced systems are solved for convergent series solutions. The velocity, temperature,and concentration fields are discussed for different physical parameters. The results indicate that the temperature and the thermal boundary layer thickness increase noticeably for large values of Brownian motion and thermophoresis effects. It is also observed that the buoyancy parameter strengthens the velocity field, showing a decreasing behavior of temperature and nanoparticle volume fraction profiles.  相似文献   

17.
The magnetohydrodynamic Sutterby fluid flow instigated by a spinning stretchable disk is modeled in this study. The Stefan blowing and heat and mass flux aspects are incorporated in the thermal phenomenon. The conventional models for heat and mass flux, i.e., Fourier and Fick models, are modified using the Cattaneo-Christov(CC)model for the more accurate modeling of the process. The boundary layer equations that govern this problem are solved using the apt similarity variables. The subsequent system of equations is tackled by the Runge-Kutta-Fehlberg(RKF) scheme. The graphical visualizations of the results are discussed with the physical significance. The rates of mass and heat transmission are evaluated for the augmentation in the pertinent parameters. The Stefan blowing leads to more species diffusion which in turn increases the concentration field of the fluid. The external magnetism is observed to decrease the velocity field. Also,more thermal relaxation leads to a lower thermal field which is due to the increased time required to transfer the heat among fluid particles. The heat transport is enhanced by the stretching of the rotating disk.  相似文献   

18.
This research focuses on the Cattaneo-Christov theory of heat and mass flux for a three-dimensional Maxwell liquid towards a moving surface. An incompressible laminar flow with variable thermal conductivity is considered. The flow generation is due to the bidirectional stretching of sheet. The combined phenomenon of heat and mass transport is accounted. The Cattaneo-Christov model of heat and mass diffusion is used to develop the expressions of energy and mass species. The first-order chemical reaction term in the mass species equation is considered. The boundary layer assumptions lead to the governing mathematical model. The homotopic simulation is adopted to visualize the results of the dimensionless flow equations. The graphs of velocities, temperature, and concentration show the effects of different arising parameters. A numerical benchmark is presented to visualize the convergent values of the computed results. The results show that the concentration and temperature fields are decayed for the Cattaneo-Christov theory of heat and mass diffusion.  相似文献   

19.
Mushtaq  T.  Rauf  A.  Shehzad  S. A.  Mustafa  F.  Hanif  M.  Abbas  Z. 《应用数学和力学(英文版)》2021,42(7):1063-1076
The rheological features of an incompressible axi-symmetric Casson-Maxwell nanofluid flow between two stationary disks are examined. The lower permeable disk is located at z =-a, while the upper disk is placed at z = a. Both the disks are porous and subjected to uniform injection. The fluid properties such as thermal conductivity vary with temperature. The Cattaneo-Christov thermal expression is implemented along with the Buongiorno nanofluid theory. By operating the similarity functions, the reduced form of the fluid model in terms of ordinary differential equations is obtained and solved by the bvp4 c numerical technique. The physical quantities are demonstrated graphically on the velocity and temperature fields. Three-dimensional flow arrangements and twodimensional contour patterns against several dimensionless variables are also sketched.The numerical values of the local Nusselt and Sherwood numbers for various quantities are presented in tabular set-up. The intensity of the linear relationship between the Nusselt and Sherwood numbers is assessed through Pearson's product-moment correlation technique. The statistical implication of the linear association between variables is also examined by the t-test statistic approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号