首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文以DOPO(9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物)、苯甲醛和4,4’-二氨基二苯砜(DDS)为原料,一锅法合成了含磷、氮、硫的化合物PNS。以PNS为阻燃剂,双酚A型树脂DGEBA为基材,DDS为环氧固化剂,制备了阻燃环氧固化物PNS/DGEBA/DDS,研究了PNS对DGEBA阻燃性能的影响,并与商业化有机磷阻燃剂DOPO作对比,同时初步探讨了PNS的阻燃机理。研究结果表明,PNS呈现磷/氮/硫协效阻燃作用,具有比DOPO更优异的残炭生产促进作用、抑烟效果和阻燃作用。在体系磷含量为1.5 wt%时,PNS-1.5/DGEBA/DDS的LOI值高达33.2%,并获UL 94最高阻燃级别V-0级,总烟释放量相较于DOPO-1.5/DGEBA/DDS降低15.4%,DGEBA/DDS降低2.86%,呈现良好的抑烟性能。  相似文献   

2.
以二溴新戊二醇与三氯氧磷为原料,三乙胺为催化剂,合成得到5,5-二溴甲基.1,3-二氧杂己内磷酰氯,再与邻苯三酚反应得到新型磷系阻燃剂1,2,3-三(5,5-二溴甲基-1,3-二氧杂已内磷酰氧基)苯,两步反应总产率71.3%.目标产物结构经元素分析、IR、MS、及1H NMR证实.热失重分析表明,目标产物具有较高的热稳定性和良好的成炭性,起始分解温度为295.25℃,500℃时炭残余量达27.75%.  相似文献   

3.
新型单组分磷氮膨胀阻燃剂的合成   总被引:1,自引:0,他引:1  
王会娅 《化学研究》2010,21(1):32-35
以新戊二醇与三氯氧磷为原料,合成了5,5-二甲基-1,3-二氧杂己内磷酰氯;进而将5,5-二甲基-1,3-二氧杂己内磷酰氯分别与苯并咪唑类衍生物反应,得到三种新型单组分磷氮膨胀阻燃剂(Ⅲa-c).利用IR1、HNMR、质谱及元素分析等表征了Ⅲa-c三种化合物的结构;并利用热重分析考察了三种化合物的热稳定性能.结果表明,目标产物Ⅲa-c均有较好的成炭性和热稳定性,600℃时残炭质量分数分别达26.93%、23.62%及18.75%.  相似文献   

4.
朱益忠  张喜全  刘飞  顾红梅 《应用化学》2015,32(11):1240-1245
以(5R)-3-(4-溴-3-氟苯基)-5-羟甲基噁唑烷-2-酮为起始原料,在[PdCl2(dppf)]·CH2Cl2催化下与联硼酸频那醇酯反应得到硼化物,继而与5-溴-2-(2-甲基-2H-四唑-5-基)吡啶进行Suzuki反应得到特地唑胺,收率82.9%。 分别考察了催化体系对硼化反应和Suzuki反应的影响,确定了较佳的反应条件。 特地唑胺与二苄基N,N-二异丙基亚磷酰胺反应得到二苄基保护的磷酸特地唑胺,随后经Pd/C脱苄得到磷酸特地唑胺,总收率66.2%。  相似文献   

5.
新型树状单分子磷-氮膨胀阻燃剂的合成及阻燃性能研究   总被引:1,自引:0,他引:1  
以六氯环三磷腈、对羟基苯甲醚、新戊二醇以及三氯氧磷等为原料, 合成一种新型树状单分子磷-氮膨胀阻燃剂六(4-(5,5-二甲基-1,3-二氧杂环己内磷酸酯基苯氧基))环三磷腈(Ⅵ). 标题化合物结构经IR、MS 及1H NMR 证实. 热失重分析表明标题化合物具有较高的热稳定性和良好的成炭性, 氮气氛下的起始分解温度为270 ℃, 600 ℃时炭残余量达45.2%. 实验表明, 标题化合物对环氧树脂呈现出良好的阻燃效果.  相似文献   

6.
5,5-二甲基乙內醯脲和過量的丙烯腈在1,4-二氧六圜內及苛性鉀的催化作用下,發生反應,產生1,3-二(β-腈乙基)-5,5-二甲基乙內醯脲。後者經水解後,產生1,3-(β-羧乙基)-5,5-二甲基乙內醯脲。  相似文献   

7.
本文报道了四种2-亚甲基-1,3-二氧己烷类单体:4-甲基-2-亚甲基-1,3-二氧己烷(Ⅱ)、4,6-二甲基-2-亚甲基-1,3-二氧己烷(Ⅳ)、5,5-二甲基-2-亚甲基-1,3-二氧己烷(Ⅵ)和5,5-二乙基-2-亚甲基-1,3-二氧己烷(V Ⅲ)的合成以及自由基开环聚合。结果表明,上述单体在聚合过程中出现异构化开环现象。Ⅲ和Ⅳ的甲基位置在环上氧原子的α-碳原子上时,显示对异构化反应的影响比Ⅵ及Ⅷ的甲基和乙基在β-碳原子上时更显著。上述现象与异构化开环形成仲碳自由基中间体的倾向更大有关。 Ⅳ在苯溶液中及过氧化二叔丁基存在下,120℃反应,得到全部是聚-δ-戊内酯骨架结构的聚合物。提出了一种合成聚-δ-戊内酯类链结构的聚酯的新的途径和方法。  相似文献   

8.
通过取代反应、 缩合反应和加成反应等合成了一种无机-有机杂化大分子阻燃剂 六-[4-(N-苯基氨基-DOPO-次甲基)苯氧基]环三磷腈(DOPO-PCP), 并利用傅里叶变换红外光谱、 1H和 31P核磁共振波谱对其进行结构表征. 将DOPO-PCP用于环氧树脂(DGEBA)阻燃, 得到环氧树脂阻燃固化物, 通过极限氧指数(LOI)、 垂直燃烧测试(UL-94)、 热重分析与锥形量热(Cone)测试等对阻燃环氧树脂固化物的热稳定性及燃烧性能进行分析; 利用扫描电子显微镜及Mapping观察并分析了燃烧碳层的形貌与元素分布. 研究结果表明, 产物的结构符合设计的DOPO-PCP分子结构; 当DOPO-PCP在DGEBA中添加量(质量分数)达12.2%时, 磷含量为1.3%, 制得的阻燃环氧树脂固化物垂直燃烧测试通过UL-94 V-0级, LOI值为36.2%; Cone测试结果表明, DOPO-PCP的添加有效降低了DGEBA燃烧时热量与烟气的释放, 且在高温下碳残余量显著增加. 研究表明DOPO-PCP兼具气相和凝固相阻燃机理, 对DGEBA有良好的阻燃性能.  相似文献   

9.
以TG-DTG为手段,研究了双酚S-二(5,5-二甲基-1,3-二氧杂己内磷酸酯)(FR)在氮气气氛中的热分解动力学,利用Kissinger和Flynn-Wall-Ozawa(FWO)法对FR进行热分解动力学分析,求出了该物质的热分解动力学参数.结果表明,Kissinger法所求得的活化能为190.16 kJ.mol-1,指前因子lgAk为17.42 s-1;FWO法所求得的活化能为198.48 kJ.mol-1.Coats-Redfern方法得到其热分解动力学方程为g(α)=(1-α)-2.  相似文献   

10.
报道了trans-2-氧代-2-氯-4-苯基-5,5-二甲基-1,3,2-二氧磷杂环己烷以及cis-2-硫代-2-氯-4-苯基-5,5-二甲基-1,3,2-二氧磷杂环己烷甲醇解反应的立体化学。结果表明,反应体系的酸碱性对前者甲醇解反应的立体化学有着重要影响。而硫代环磷酰氯在碱性条件下的甲醇解反应存在一个开环异构化过程。  相似文献   

11.
Highly soluble 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener (2), bearing its amino groups directly on the DOPO framework, is investigated with respect to its use as a reactive flame retardant in thermosets. A mechanism for decomposition of the corresponding phosphorus-modified epoxy resin system based on a diglycidylether of bisphenol A DGEBA and 2 (DGEBA/2) is proposed and compared to the systems using DGEBA and 4,4′-diaminodiphenylsulfon (DGEBA/DDS) and to a similar system based on the structurally comparable non-reactive DOPO-based compound (DGEBA/DDS/1). Additive 1 changed the decomposition characteristics of the epoxy resin only slightly and phosphorus was released. Incorporating 2 induces two-step decomposition and most of the phosphorus remains in the residue. Furthermore, the fire behaviour of neat epoxy resin systems and a representative carbon fibre-reinforced composite based on DGEBA, DDS and 2 (DGEBA/DDS/2) were examined and compared to that of the analogous composite systems based on DGEBA/DDS and DGEBA/DDS/1. Based on different flame retardancy mechanisms both the reactive compound 2 and the additive compound 1 improve flammability (increase in LOI >13% and achieving V-1 behaviour) of the epoxy resin and composites. Under forced flaming only the flame inhibition of the additive compound 1 acts sufficiently. Lastly, the superior key mechanical properties of the epoxy resin and composite based on 2 are sketched.  相似文献   

12.
Abstract

Thirteen novel cyclic phosphates were rationally designed and synthesized by introducing diary ethers containing pyrimidine. All the target compounds were characterized by 1H, 13C, 31P NMR and HRMS. The test of herbicidal activity indicated that most of the compounds showed good herbicidal activities against Amaranthus retroflexus. The compounds IA-2 (1-(5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)propyl-2-((4,6-dimethoxypyrimidin-2-yl)oxy)benzoate) and IA-3 ((5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)(phenyl)methyl-2-((4,6-dimethoxypyrimidin-2-yl)oxy)benzoate) exhibited remarkable post-emergency herbicidal activity against the tested monocotyledonous weed at the dosage of 112.5?g ai/ha.  相似文献   

13.
A novel flame retardant additive hexa-(phosphaphenanthrene -hydroxyl-methyl-phenoxyl)-cyclotriphosphazene (HAP-DOPO) with phosphazene and phosphaphenanthrene double functional groups has been synthesized from hexa-chloro-cyclotriphosphazene, 4-hydroxy-benzaldehyde and 9,10-dihydro-9-oxa-10- phosphaphenanthrene 10-oxide(DOPO). The structure of HAP-DOPO was characterized by Fourier transformed infrared (FT-IR) spectroscopy and 1H nuclear magnetic resonance (1H NMR) and 31P nuclear magnetic resonance (31P NMR). The additive HAP-DOPO was blended into diglycidyl ether of bisphenol-A (DGEBA) to prepare flame retardant epoxy resins. The flame retardant properties and thermal properties of the epoxy resins cured by 4, 4′-Diamino-diphenyl sulfone (DDS) were investigated from the differential scanning calorimeter (DSC), the thermogravimetric analysis (TGA), UL94 test, the limiting oxygen index (LOI) test and Cone calorimeter. Compared to traditional DOPO-DGEBA and ODOPB-DGEBA thermosets, the HAP-DOPO/DGEBA thermosets have higher Tgs at the same UL94 V-0 flammability rating for their higher crosslinking density and have higher char yield and lower pk-HRR at same 1.2 wt.% phosphorus content which confirm that HAP-DOPO has higher flame retardant efficiency on thermosets. The scanning electron microscopy (SEM) results shows that HAP-DOPO in DGEBA/DDS system obviously accelerate formation of the sealing, stronger and phosphorus-rich char layer to improve flame retardant properties of matrix during combustion.  相似文献   

14.

A novel phosphorous containing flame retardant epoxy resin is synthesized by modifying the epoxy resin initially with phosphoric acid and further with aluminum hydroxide (ATH) to enhance the fire retardancy of the modified epoxy resin. The several phosphorous modified epoxy resin to ATH mass ratios were used to study the effect of ATH addition on epoxy. Thermal and mechanical properties. The structure of the modified flame retardant epoxy resin was characterized using Fourier-transform infrared spectroscopy (FTIR) while thermal degradation behavior and flame retardant properties were examined using thermo-gravimetric analysis (TGA) and UL-94 testing. Furthermore, ultimate tensile strength and young modulus were analyzed to study the effect of ATH addition on mechanical properties. The findings indicated that fire retardancy of ATH reinforced modified ep oxy resin is higher than virgin and phosphorous modified epoxy resin and depicted eminent flame retardant properties with suitable mechanical properties.

  相似文献   

15.
A novel flame‐retardant epoxy resin, (4‐diethoxyphosphoryloxyphenoxy)(4‐glycidoxyphenoxy)cyclotriphosphazene (PPCTP), was prepared by the reaction of epichlorohydrin with (4‐diethoxyphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene and was characterized by Fourier transform infrared, 31P NMR, and 1H NMR analyses. The epoxy resin was further cured with diamine curing agents, 4,4′‐diaminodiphenylmethane (DDM), 4,4′‐diaminodiphenylsulfone (DDS), dicyanodiamide (DICY), and 3,4′‐oxydianiline (ODA), to obtain the corresponding epoxy polymers. The curing reactions of the PPCTP resin with the diamines were studied by differential scanning calorimetry. The reactivities of the four curing agents toward PPCTP were in the following order: DDM > ODA > DICY > DDS. In addition, the thermal properties of the cured epoxy polymers were studied by thermogravimetric analysis, and the flame retardancies were estimated by measurement of the limiting oxygen index (LOI). Compared to a corresponding Epon 828‐based epoxy polymer, the PPCTP‐based epoxy polymers showed lower weight‐loss temperatures, higher char yields, and higher LOI values, indicating that the epoxy resin prepared could be useful as a flame retardant. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 972–981, 2000  相似文献   

16.
A thermoplastic toughener, polyether sulphone (PES) and a number of different types of flame retardants were blended in different ratios with a commercial epoxy resin triglycidyl-p-aminophenol (TGAP) and 4,4-diamino diphenyl sulphone (DDS) a curing agent. The effect of type and levels of flame retardants (FR) and the toughening agent on the curing, thermal decomposition and char oxidation behaviour of the epoxy resin was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. It was observed that the toughener slightly increases the curing temperature (by up to 20 °C) but had minimal effect on the decomposition temperature of the resin. Flame retardants, however affected all stages depending upon the type of flame retardant used. The curing peak for samples containing tougher and flame retardants although slightly changed depending upon the type of FR, was not more than ± 20 °C compared to that of samples containing toughener only. All flame retardants lowered the decomposition temperature of the epoxy resin. Phosphorus- and nitrogen-containing flame retardants reduced the char oxidation leading to more residual char, whereas halogen- containing flame retardants had less effect on this stage.  相似文献   

17.
Octa(aminophenyl)silsesquioxane (OAPS) was used as the curing agent of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. A study on comparison of DGEBA/OAPS with DGEBA/4,4′-diaminodiphenyl sulfone (DDS) epoxy resins was achieved. Differential scanning calorimetry was used to investigate the curing reaction and its kinetics, and the glass transition of DGEBA/OAPS. Thermogravimetric analysis was used to investigate thermal decomposition of the two kinds of epoxy resins. The reactions between amino groups and epoxy groups were investigated using Fourier transform infrared spectroscopy. Scanning electron microscopy was used to observe morphology of the two epoxy resins. The results indicated that OAPS had very good compatibility with DGEBA in molecular level, and could form a transparent DGEBA/OAPS resin. The curing reaction of the DGEBA/OAPS prepolymer could occur under low temperatures compared with DGEBA/DDS. The DGEBA/OAPS resin didn’t exhibit glass transition, but the DGEBA/DDS did, which meant that the large cage structure of OAPS limited the motion of chains between the cross-linking points. Measurements of the contact angle indicated that the DGEBA/OAPS showed larger angles with water than the DGEBA/DDS resin. Thermogravimetric analysis indicated that the incorporation of OAPS into epoxy system resulted in low mass loss rate and high char yield, but its initial decomposition temperature seemed to be lowered.  相似文献   

18.
A flame-retardant epoxy resin (EP) was synthesized based on a novel reactive phosphorus-containing monomer, 4-[(5,5-dimethyl-2-oxide-1,3,2-dioxaphosphorinan-4-yl)oxy]-phenol (DODPP), and its structures were characterized by FTIR, 1H NMR and 31P NMR spectra. The DODPP-EP3/LWPA (low molecular weight polyamide), which contains 2.5% phosphorus, can reach UL-94 V-0 rating and a limiting oxygen index (LOI) value of 30.2%. The thermal properties and burning behaviours of cured epoxy resins were investigated by differential scanning calorimeter (DSC), thermogravimetry (TG), LOI, UL-94 tests and cone calorimetry. The morphologies of residues of cured epoxy resins were investigated by scanning electron microscopy (SEM). DSC shows that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA shows that the onset decomposition temperatures and the maximum-rate decomposition temperatures decrease, while char yields increase, with the increase of phosphorus content. The data from the cone calorimeter tests give the evidence that heat release rate (HRR), peak heat release rate (PHRR), average heat release rate (Av-HRR), average mass loss rate (Av-MLR) and the fire growth rate index (FIGRA) decrease significantly for DODPP-EP3/LWPA. SEM shows that the DODPP-EP3/LWPA forms lacunaris and compact charred layers which inhibit the transmission of heat during combustion.  相似文献   

19.
A phosphorus-containing bio-based epoxy resin (EADI) was synthesized from itaconic acid (IA) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). As a matrix, its cured epoxy network with methyl hexahydrophthalic anhydride (MHHPA) as the curing agent showed comparable glass-transition temperature and mechanical properties to diglycidyl ether in a bisphenol A (DGEBA) system as well as good flame retardancy with UL94 V-0 grade during a vertical burning test. As a reactive flame retardant, its flame-resistant effect on DGEBA/MHHPA system as well as its influence on the curing behavior and the thermal and mechanical properties of the modified epoxy resin were investigated. Results showed that after the introduction of EADI, not only were the flame retardancy determined by vertical burning test, LOI measurement, and thermogravimetric analysis significantly improved, but also the curing reactivity, glass transition temperature (T g), initial degradation temperature for 5% weight loss (T d(5%)), and flexural modulus of the cured system improved as well. EADI has great potential to be used as a green flame retardant in epoxy resin systems.  相似文献   

20.
Boron‐containing novolac resins were synthesized by the modification of a commercial novolac resin with different contents of bis(benzo‐1,3,2‐dioxaborolanyl)oxide. These novolac resins were crosslinked with diglycidyl ether of bisphenol A (DGEBA), and their thermal, thermodynamomechanical, and flame‐retardant properties were evaluated. The boron‐containing novolac resins were less thermally stable than the unmodified novolac resin. Their modification degree and DGEBA content were related to the crosslinking density of the materials. The boron‐containing novolac resins generated boric acid at high temperatures and gave an intumescent char that slowed down the degradation and prevented it from being total. They also showed good flame‐retardant properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1701–1710, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号