首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 390 毫秒
1.
采用超声波辐射与固-液相转移催化联用技术合成出了一系列新型含咔唑基团的酰基硫脲衍生物3,利用IR、~1H NMR、~(13)C NMR和元素分析对其进行了结构表征.该合成方法具有反应时间短、操作简便、产率高等优点.对所合成的目标化合物进行了细胞分裂周期25B磷酸酶(Cdc25B)和蛋白酪氨酸磷酸酶1B(PTP1B)抑制活性筛选,实验结果显示,目标化合物3对Cdc25B均具有良好的抑制活性,部分化合物对PTP1B也表现出良好的抑制活性.其中1-(4-硝基苯甲酰基)-3-(9-乙基-咔唑-3-基)硫脲(3n)对Cdc25B的抑制活性最高[IC50=(0.49±0.12)mg/mL],1-(2-硝基苯甲酰基)-3-(9-乙基-咔唑-3-基)硫脲(3l)对PTP1B的抑制活性最高[IC50=(3.59±1.15)mg/m L].值得注意的是,化合物3n对Cdc25B和PTP1B均具有较高的抑制活性.分子对接的初步研究结果揭示了此类抑制剂的结构-活性关系.这些活性目标化合物是潜在的Cdc25B和PTP1B抑制剂,在癌症和糖尿病治疗方面具有很好的应用前景.  相似文献   

2.
以邻苯二胺和一氯乙酸为初始原料,经多步反应,合成了一系列新型含苯并咪唑环和芳磺酰基的3,6-二取代三唑并噻二唑衍生物7a~7y.利用~1H NMR、IR和元素分析对新的中间体化合物3、4、6及目标产物7进行了结构表征.对所合成的目标化合物进行了细胞分裂周期25B磷酸酶(Cdc25B)和蛋白酪氨酸磷酸酶1B(PTP1B)抑制活性筛选,实验结果显示,部分目标化合物对Cdc25B和PTP1B显示出良好的抑制活性,其中目标化合物7d对Cdc25B的抑制活性最高[IC50=(7.72±0.73)mg/m L],7u对PTP1B的抑制活性最高[IC50=(3.31±0.57)mg/m L].值得注意的是,化合物7b、7d、7l、7t和7u对Cdc25B和PTP1B均具有抑制活性.这些活性的目标化合物是潜在的Cdc25B和PTP1B抑制剂,在癌症和糖尿病治疗方面具有很好的应用前景.  相似文献   

3.
以咔唑和4-氰基氯化苄为初始原料,经多步反应合成出了一系列新型含咔唑基团的酰腙衍生物6,并利用IR、1H NMR、13CNMR和元素分析对其进行了结构表征.对目标化合物进行了Cdc25B/PTP1B抑制活性评价,结果显示,目标化合物6对Cdc25B/PTP1B均具有较高的抑制活性,其中4-[(咔唑-9-基)甲基]-N'-(2-羟基-1-萘亚甲基)苯甲酰肼(6g)对Cdc25B和PTP1B的抑制活性最高, IC50值分别为(2.16±0.38)和(1.06±0.23)?g/mL.对化合物6g进行分子对接的研究结果表明, 6g能与Cdc25B/PTP1B酶形成稳定的复合物,形成氢键和疏水等相互作用.  相似文献   

4.
合成了一系列新型的基于咔唑的单-/双-硫代碳酰腙衍生物.利用IR、1H NMR、13C NMR和元素分析对其进行了结构表征.评价了目标化合物对Cdc25B和PTP1B的抑制活性,讨论了其结构与活性的关系.实验结果显示,大部分目标化合物对Cdc25B和PTP1B表现出良好的抑制活性.其中,1,5-双[(9-戊基-3-咔唑基)亚甲基]硫代碳酰腙(4d)对Cdc25B的抑制活性最高,IC50为(0.23±0.02)μg/m L.1,5-双[(9-乙基-3-咔唑基)亚甲基]硫代碳酰腙(4a)对PTP1B的抑制活性最高, IC50为(1.00±0.16)μg/m L.对目标化合物4a和4d进行分子对接研究和密度泛函理论(DFT)计算,结果表明,目标化合物4d和4a分别进入到了Cdc25B和PTP1B酶的活性位点区域,有活性作用的主要是硫代碳酰腙和咔唑基团.  相似文献   

5.
以苯亚氨基为桥,设计合成了18个含有三唑并噻二唑和均三嗪双杂环的新型分子(4a~4i和5a~5i),并利用红外光谱、核磁共振谱和高分辨质谱等技术手段对其进行了结构表征。将吗啉和四氢吡咯分别与三聚氯氰发生双取代反应合成三嗪衍生物(1A和1B),然后将1A和1B分别与对氨基苯甲酸反应,合成重要中间体(2A和2B)。通过熔融法将8种脂肪酸与二氨基硫脲缩合得1,2,4-三唑衍生物3a~3h,最后将2A和2B在三氯氧磷和四丁基溴化铵催化下分别与3a~3h反应得目标产物。为了进一步比较3-脂肪基和3-苯基对药效活性的影响,利用相同方法设计合成了目标产物4i和5i。评价了目标产物对细胞分裂周期25磷酸酯酶B(Cdc25B)和蛋白酪氨酸磷酸酶1B(PTP1B)抑制活性。结果发现:所有目标分子对Cdc25B均表现出良好的抑制活性,半抑制浓度(IC_(50)值)在2.40~0.31 mg/L之间,目标分子4a~4f和5a~5i的IC_(50)值均低于阳性参照物Na_3VO_4[(1.25±0.14)mg/L],有望成为潜在的Cdc25B抑制剂;在PTP1B测试中,14个目标分子具有优良的抑制活性,IC_(50)值在0.98~0.37 mg/L之间,低于阳性参照物齐墩果酸[(1.19±0.27)mg/L],有望成为潜在的PTP1B抑制剂。  相似文献   

6.
为构筑V型对称结构的三唑并噻二唑类衍生物, 将间苯二甲酸和5-氨基间苯二甲酸分别与3-脂肪基-1,2,4-三唑(1)缩合, 在POCl3催化下, 合成了14个V型对称结构三唑并噻二唑稠环衍生物(2a~2g和3a~3g), 其中13个化合物为首次合成.通过红外光谱、 核磁共振波谱和高分辨质谱等对目标产物的结构进行了表征. 研究了目标产物对细胞周期分裂蛋白25B(Cdc25B)和蛋白酪氨酸磷酸酶1B(PTP1B)的抑制性能, 结果发现, 部分目标产物对Cdc25B表现出良好的抑制活性, 其中化合物3b和3f的抑制活性IC50值分别为(1.34±0.39)和(0.61±0.09) μg/mL, 有望作为治疗癌症的潜在Cdc25B抑制剂; 化合物3b~3g对PTP1B均表现出良好的抑制活性, 其中化合物3b和3e的IC50值分别为(0.36±0.05)和(0.97±0.08) μg/mL, 有望作为治糖尿病的潜在PTP1B抑制剂.  相似文献   

7.
首次设计并合成了16个新型1,2,4-三唑与1,3,4-噻二唑双杂环修饰的酰胺硫醚衍生物,并对其进行了结构表征。分别评价了目标分子对蛋白酪氨酸磷酸酶1B(PTP1B)和细胞分裂周期25磷酸酶B(Cdc25B)抑制活性,结果发现:16个目标分子对PTP1B具有良好的抑制活性,其中8-C-d和8-D-c的抑制作用最佳,半抑制浓度(IC_(50)值)分别为(1.19±0.22)mg/L和(1.08±0.09)mg/L,优于阳性参照物齐墩果酸(IC_(50)=(1.27±0.19)mg/L),有望作为抗糖尿病药物先导物;对Cdc25B抑制活性测试中,11个目标分子表现出良好的活性,其中8-A-d、8-C-d和8-D-c抑制活性的IC_(50)值分别为(0.97±0.05)、(1.06±0.03)和(0.94±0.11)mg/L,低于阳性参照物Na_3VO_4(IC_(50)=(1.25±0.14)mg/L),有望作为抗肿瘤药物先导物。  相似文献   

8.
在三氯氧磷催化下, 6种3-脂肪基-1,2,4-三唑(1a~1f)和3-苯基-1,2,4-三唑(1g)分别与对苯二甲酸和2-氨基-1,4-对苯二甲酸发生环化反应, 高产率合成了14种双枝三唑并噻二唑稠环衍生物(2和3), 并对其进行了结构表征及药物活性测试. 目标化合物对Cdc25B和PTP1B抑制活性筛选结果表明, 化合物2f, 3a和3g对Cdc25B有较高的抑制活性, IC50值分别为(3.45±0.60), (0.69±0.10)和(1.52±0.19) μg/mL; 化合物3a和3b对PTP1B表现出较高的抑制活性, IC50值分别为(0.98±0.13)和(2.00±0.16) μg/mL.  相似文献   

9.
在NH4OAc/HOAc存在下,利用微波辅助,将联苯甲酰/茴香偶酰与2-芳氧甲基苯并咪唑-1-乙酰肼(3)缩合,合成出了30个新的含苯并咪唑环的3,5,6-三取代-1,2,4-三嗪衍生物5和6.利用元素分析,IR,1H NMR及单晶X射线衍射进行了结构表征.评价了目标化合物对Cdc25B和PTP1B的抑制活性,讨论了结构与活性的关系.实验结果表明,部分目标化合物对Cdc25B和PTP1B具有良好的抑制活性,其中6o对Cdc25B的抑制活性[IC50=(0.84±0.22)μg/m L]最高.目标化合物5i,5m,5n,6h,6j,6m,6n和6o对PTP1B的抑制活性[IC50=(0.46±0.10)~(0.87±0.19)μg/m L]均高于阳性对照药物齐墩果酸[IC50=(0.97±0.15)μg/m L].值得注意的是,化合物5h,5m,6n和6o对Cdc25B和PTP1B均具有抑制活性.目标化合物是潜在的Cdc25B和PTP1B抑制剂.  相似文献   

10.
设计合成了18个以吡唑桥连1,3,4-噁二唑和1,3,5-三嗪的新型多杂环分子[7A(a~f),7B(a~f)和7C(a~f)];通过红外光谱(IR)、核磁共振波谱(NMR)和高分辨质谱(HRMS)等对目标分子进行了结构表征;评价了目标分子对蛋白酪氨酸磷酸酯酶1B(PTP1B)和细胞分裂周期25磷酸酯酶B(Cdc25B)的抑制活性.结果表明,所有目标分子对PTP1B和Cdc25B均有较好的抑制活性,其中,9个目标分子表现出优异的PTP1B和Cdc25B抑制效果,IC50值低于齐墩果酸(PTP1B抑制活性测试参照物)和正钒酸钠(Cdc25B抑制活性测试阳性参照物),有望成为潜在的PTP1B和Cdc25B抑制剂.  相似文献   

11.
合成出了一系列新型基于咔唑的单-/双-碳酰腙衍生物3和4.利用1H NMR、13C NMR、IR和元素分析对其进行了结构表征.评价了目标化合物对蛋白酪氨酸磷酸酶1B(PTP1B)的抑制活性,讨论了结构与活性的关系.实验结果显示,大部分化合物对PTP1B具有良好的抑制活性,其中1,5-双[(9-丁基-3-咔唑基)亚甲基]碳酰腙(4c)的抑制活性最高,IC50=(4.81±0.41)mmol/L,且活性高于对照药物齐墩果酸.对目标化合物1-[(9-庚基-3-咔唑基)亚甲基]碳酰腙(3f)和4c进行分子对接研究和密度泛函理论(DFT)计算.分子对接结果表明,化合物3f和4c结合到PTP1B酶由螺旋α3和α6形成的活性位点,与PTP1B酶通过氢键、极性、疏水和p-p等相互作用形成了稳定的复合物.  相似文献   

12.
首先利用含有三嗪的芳香酰肼(3)构筑了1,3,4-噁二唑衍生物(5), 然后将化合物5与含有1,3,4-噻二唑的衍生物(6)拼合合成了18个目标分子. 利用红外光谱(IR)、 核磁共振波谱(NMR)和高分辨质谱(HRMS)等技术对其结构进行了表征. 考察了目标分子对细胞分裂周期25磷酸酯酶B(Cdc25B)和蛋白酪氨酸磷酸酯酶1B(PTP1B)的抑制活性. 结果表明, 有8个目标分子的抑制活性优于其阳性对照物, 有望成为潜在的Cdc25B抑制剂; 有12个目标分子的抑制活性优于其对照物, 有望成为潜在的PTP1B抑制剂.  相似文献   

13.
蛋白酪氨酸磷酸酶1B (protein tyrosine phosphatase 1B, PTP1B)是当前开发治疗糖尿病药物的优秀靶标, 也是钒配合物抗糖尿病作用相关的重要靶蛋白. 研究了三种含氮平面杂环螯合配体2,2’-联咪唑(L1), 2,2’-联吡啶(L2), 1,10-邻菲咯啉(L3)的氧钒配合物对PTP1B以及碱性磷酸酶(alkaline phosphatase, ALP)的体外抑制作用. 结果表明, 1∶1和2∶1型配位的氧钒化合物均表现出对PTP1B较强的抑制活性, IC50值在120~260 nmol/L间, 抑制能力接近双麦芽酚氧钒配合物(BMOV). 抑制动力学实验表明这些氧钒配合物对PTP1B的抑制模式均为竞争性抑制, 抑制常数在20~160 nmol/L. 其对PTP1B抑制活性较ALP高103倍, 表明氧钒配合物对两种磷酸酶的抑制具有一定的选择性.  相似文献   

14.
Protein tyrosine phosphatase 1B (PTP1B) plays an important role as a negative regulator and has been proved to be an effective target for the treatment of type 2 diabetes mellitus. Bis-(2,3-dibromo-4,5-dihydroxyphenyl)-methane 7 was first reported as a natural bromophenol with significant inhibition against PTP1B which was isolated from red algae Rhodomela conrervoides. Intrigued by its astonishing activity (IC50 = 2.4 μmol/L), compound 7 was synthesized with the overall yield of 24% and evaluated for its PTPIB inhibitory activity compared with natural compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号