首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A relatively simple method for quantifying caffeine, theobromine, theophylline and adenine by HPLC with amperometric detection was developed. A C18-column and an isocratic elution with phosphate buffer pH 3.5/methanol (90 : 10) were employed for the chromatographic separation of the investigated compounds. The optimal detection potential was +1.4 V. The limits of detection were 0.4 ng for adenine, 1 ng for theophylline and 2.5 ng for caffeine and theobromine. The method was applied to the determination of these purine alkaloids in beverages, tea, coffee and cacao. The determination was carried out directly or after solid-phase extraction.  相似文献   

2.
Separation of ATP, ADP, AMP, adenine, adenosine, cAMP, ITP, IDP, IMP, hypoxanthine, inosine, cIMP, the guanine series, NAD, NADPH, xanthine, 3-methylxanthine, theobromine, theophylline, and caffeine was accomplished using high-performance liquid chromatography with a microparticulate reversed-phase column. Under isocratic conditions all compounds could be eluted with reasonable resolution and retention time. Quantitation by peak height for several of the compounds was used to the 10-ng level.  相似文献   

3.
《Analytical letters》2012,45(16):2518-2524
A reversed-phase high performance liquid chromatographic method was improved for the simultaneous determination of theobromine, paraxanthine, theophylline, and caffeine in urine. The method includes a liquid-liquid extraction at alkaline pH with ethylacetate. The 7-(2,3-dihidroxypropyl) theophylline was used as an internal standard (ISTD). The separation was achieved on a C18 column using 14:86 methanol:buffer (25 mM KH2PO4 adjusted to pH 4 with ortho-phosphoric acid) solution as mobile phase under isocratic conditions at a flow rate 1 mL min?1. An ultraviolet absorption at 274 nm was monitored. In these conditions, the LOD was 0.03 μg mL?1 for theobromine, 0.02 μg mL?1 for paraxanthine, 0.04 μg mL?1 for theophylline, and 0.08 μg mL?1 for caffeine. The method has been applied to urine samples.  相似文献   

4.
Using calorimetry, 1H NMR, UV spectroscopy, and solubility methods, the interactions of natural and hydroxypropylated 6h-, β-, and γ-cyclodextrins with xanthine and its methylated derivatives (theophylline, theobromine, and caffeine) were studied in aqueous solutions at 298.15 K. Cyclodextrins revealed low complexation ability toward xanthine and its methylated derivatives. Hydroxypropyl-γ-cyclodextrin with the largest internal cavity is the most effective solubilizing agent for this type of compounds. The calculated thermodynamic parameters are discussed in terms of structural effects of cyclodextrins and purine alkaloids on the character of their intermolecular interactions in aqueous medium.  相似文献   

5.
In acid solution, caffeine, theobromine, and theophylline are rapidly and quantitatively oxidized with electrogenerated chlorine in a stoichiometric ratio of 2 : 5 to give alloxan and urea. Procedures for the coulometric determination of microgram amounts of caffeine, theophylline, and theobromine in model solutions, caffeine in tea and coffee samples, and caffeine and theophylline in some pharmaceutical preparations were developed.  相似文献   

6.
The phase transfer catalysed methylation of adenine gave selectively 9-methyladenine (98%), while benzylation yields 9-benzyladenine as the major product accompanied by very small amounts of the 3-isomer. Alkylation of xanthine, theobromine and theophylline by the same technique gave also the corresponding N-alkyl derivatives in high yields, with no other O-alkylated regioisomer. These alkylation procedures, owing to their simplicity and selectivity, constitute a considerable improvement upon the classical techniques.  相似文献   

7.
Excited state lifetimes of hypoxanthine and four methylxanthine compounds (paraxanthine, theophylline, theobromine, and caffeine) were studied by femtosecond transient absorption spectroscopy in aqueous and acetonitrile solution. Transient absorption signals recorded at visible and UV probe wavelengths reveal that internal conversion from the photoexcited state to the electronic ground state takes place in water on the hundreds of femtoseconds time scale. Excited-state relaxation occurs approximately threefold more slowly in acetonitrile solution than in water. Structural considerations suggest that the deactivating conical intersection for the methylxanthines differs from that responsible for nonradiative decay by hypoxanthine, adenine, and guanine. All compounds studied have ultrashort excited state lifetimes similar to those of adenine and guanine, suggesting that these xanthine derivatives could have been photostable building blocks in prebiotic environments exposed to intense UV radiation.  相似文献   

8.
A normal coordinate analysis has been carried out on four compounds having a similar ring structure with different side chain substitutions, which are xanthine, caffeine, theophylline, and theobromine. Xanthine is chemically known as 2,6-dihydroxy purine. Caffeine, theophylline and theobromine are methylated xanthines. Considering the methyl groups as point mass, the number of normal modes of vibrations can be distributed as Gamma(vib) = 27 A' + 12 A" based on C(s) point group symmetry associated with the structures. In the present work 15 A' and 12 A' normal modes are considered. A new set of orthonormal symmetry co-ordinates have been constructed. Wilson's F-G matrix method has been adopted for the normal coordinate analysis. A satisfactory vibrational band assignment has been made by employing the FTIR and FT Raman spectra of the compounds. The potential energy distribution is calculated with the arrived values of the force constants and hence the agreement of the frequency assignment has been checked.  相似文献   

9.
Caffeine (1,3,7-trimethylxanthine), theobromine (3,7-dimethylxanthine) and theophylline (1,3-dimethylxanthine) are the most important naturally occurring methylxanthines. Caffeine is a constituent of coffee and other beverage and included in many medicines. Theobromine and theophylline are formed as metabolites of caffeine in humans, and are also present in tea, cocoa and chocolate products.

In order to improve the chromatographic resolution (Rs) with a good analysis time, experimental designs were applied for multivariate optimisation of the experimental conditions of an isocratic reversed-phase high-performance liquid chromatographic (RP-HPLC) method used for the simultaneous determination of caffeine, theobromine and theophylline. The optimisation process was carried out in two steps using full three-level factorial designs. The factors optimised were: flow rate and mobile phase composition. Optimal conditions for the separation of the three methylxanthines were obtained using a mixture of water/ethanol/acetic acid (75:24:1%, v/v/v) as mobile phase and a flow rate of 1.0 mL min−1. The RP-HPLC/UV method was validated in terms of limit of detection (LOD), limit of quantitation (LOQ), linearity, recovery and the precision, calculated as relative standard deviation (R.S.D.). In these conditions, the LOD was 0.10 μg L−1 for caffeine, 0.07 μg L−1 for theobromine and 0.06 μg L−1 for theophylline. The proposed method is fast, requires no extraction step or derivatization and was suitable for quantification of these methylxanthines in coffee, tea and human urine samples.  相似文献   


10.
Monolithic capillary columns based on zirconia were prepared directly from zirconium alkoxide. They were also prepared coating a classical silica based monolithic column with zirconium butoxide. Using the gradual evolution of the theophylline/caffeine separation factor, it was found that successive zirconia coatings produced the progressive fading of surface silanols replaced by Zr–OH groups. The behavior of a silica monolith coated four times with zirconium butoxide was very similar to that of a pure zirconia monolith. The dramatic change in xanthine separation factor observed with zirconia stationary phases and the theophylline and caffeine probe solutes was used to develop a complete separation of xanthines on zirconia stationary phase in less than 6 min. The three dimethylxanthine isomers, theophylline, theobromine and paraxanthine, are very difficult to separate in RPLC with classical C18 stationary phases. The three isomers were easily separated in HILIC mode on a zirconia based stationary phase.  相似文献   

11.
This work relates the development of an analytical methodology to simultaneously determine three methylxanthines (caffeine, theobromine, and theophylline) in beverages and urine samples based on reversed-phase high-performance liquid chromatography. Separation is made with a Bondesil C18 column using methanol-water-acetic acid or ethanol-water-acetic acid (20:75:5, v/v/v) as the mobile phase at 0.7 mL/min. Identification is made by absorbance detection at 273 nm. Under optimized conditions, the detection limit of the HPLC method is 0.1 pg/mL for all three methylxanthines. This method is applied to urine and to 25 different beverage samples, which included coffee, tea, chocolate, and coconut water. The concentration ranges determined in the beverages and urine are: < 0.1 pg/mL to 350 microg/mL and 3.21 microg/mL to 71.2 microg/mL for caffeine; < 0.1 pg/mL to 32 microg mL and < 0.1 pg/mL to 13.2 microg/mL for theobromine; < 0.1 pg/mL to 47 microg/mL and < 0.1 pg/mL to 66.3 microg/mL for theophylline. The method proposed in this study is rapid and suitable for the simultaneous quantitation of methylxanthines in beverages and human urine samples and requires no extraction step or derivatization.  相似文献   

12.
《Analytical letters》2012,45(19):1525-1535
Abstract

A selective GLC procedure for the determination of caffeine, theophylline and theobromine is presented. Theophylline and theobromine were methylated with Methelute and determined as caffeine. The GLC procedure proved to be simpler and more time saving than the spectrophotometric methods without loss of accuracy. The interference of accompanying ingredients could be, eliminated.  相似文献   

13.
Zusammenfassung Eine Methode zur quantitativen Bestimmung von Coffein, Theobromin und Theophyllin wurde ausgearbeitet. Nach Untersuchung des voltammetrischen Verhaltens dieser Verbindungen an einer glasartigen Kohlenstoffelektrode zeigte sich, daß eine gleichzeitige voltammetrische Bestimmung infolge der ähnlichen Halb-Peakpotentiale nicht möglich ist. Daher wurden die Methylxanthine durch Hochdruckflüssigkeitschromatographie getrennt und mit einem amperometrischen Detektor angezeigt.Angewandt wurde die Methode zur Bestimmung des Coffeins, Theobromins und des Theophyllins in Tee, Kaffee, Kakao und Getränken. Nach Extraktion mit Wasser wurden störende Substanzen an Polyamid gebunden und die Methylxanthine durch reversed phase chromatography getrennt. Die Identifizierung und die quantitative Bestimmung erfolgte mit dem elektrochemischen Detektor. Die Nachweisgrenze liegt für Coffein bei 4 ng, für Theobromin bei 1,5 ng und für Theophyllin bei 0,7 ng.
Determination of caffeine, theobromine and theophylline in tea, coffee, cocoa and beverages by high fressure liquid chromatography with electrochemical detection
Summary A method for quantitative determination of caffeine, theobromine and theophylline was developed. By investigation of the voltammetric behaviour of these substances at a glassy carbon electrode it was found, that a simultaneous voltammetric determination is impossible because the half-peak potentials of theobromine and caffeine are nearly identical. Therefore the methylxanthines were separated by HPLC and detected with an amperometric detector.This method was applied to the determination of caffeine, theobromine and theophylline in tea, coffee, cocoa and in beverages. After extraction with water interfering substances were removed on a polyamide column and the extract was separated by reversed phase chromatography. For identification and quantitative determination the electrochemical detector was used. The detection limit for caffeine is 4 ng, for theobromine 1,5 ng and for theophylline 0,7 ng.


Vorgetragen beim 8. Internationalen Mikrochemischen Symposium in Graz, 28. August 1980.  相似文献   

14.
Summary A new method based on reversed-phase ion-interaction HPLC is described for the identification and quantitation of theobromine, theophylline and caffeine in beverages. The interaction reagent used is octylamine orto-phosphate which also constitutes the mobile phase. The stationary phase is a microparticulate reversed-phase C-18 packing. With spectrophotometric detection at 274 nm, detection levels of 0.15, 0.30 and 0.40 ppm were achieved for theobromine, theophylline and caffeine, respectively.Quantitative analysis was performed by the standard addition method for theobromine and caffeine contents in tea, espresso-coffee, decaffeinated coffee, decaffeinated tea and cola-beverages.  相似文献   

15.
The inclusion complexes of beta-cyclodextrin (beta-CD) and HP-beta-cyclodextrin (HP-beta-CD) with caffeine, theophylline and theobromine were investigated by fluorimetry. Various factors affecting the formation of inclusion complexes were discussed in detail including forming time, pH effect and temperature. The results indicate that inclusion process was affected seriously by laying time and pH. The forming time of beta-CD inclusion complexes is much longer than that of HP-beta-CD. The optimum pH range is about 7-12 for caffeine, 8-10 for TP, 10.5-12 for TB. The intensities of their fluorescence increase with the decreasing of temperature. Their maximum excitation wavelengths are all in the range of 280-290 nm. The emission wavelength of caffeine and theophylline are both in the range of 340-360 nm, and that of theobromine is about 325 nm. The fluorescence signals are intensified with the increasing concentration of CD. The stoichiometry of the inclusion complexes of CD with these three methyl xanthine derivatives are all 1:1 and the formation constant are all calculated.  相似文献   

16.
《Electroanalysis》2017,29(7):1828-1837
Xanthine and its methyl derivatives, theophylline and caffeine are purines which find important roles in biological systems. The simultaneous voltammetric behaviour of these purines has been studied on a glassy carbon electrode modified with an electropolymerised film of para amino benzene sulfonic acid. Well defined and well separated peaks were obtained for the oxidation of xanthine, theophylline and caffeine on the polymer modified electrode in the square wave mode. The experimental requirements to obtain the best results for individual as well as simultaneous determination were optimised. The signal for the electro‐oxidation was found to be free of interferences from each other in the range 0.9 – 100 μM in the case of xanthine and from 10–100 μM in the case of theophylline and caffeine with detection limits 0.35 μM, 7.02 μM and 11.95 μM respectively. The simultaneous determination of uric acid, the final metabolic product of xanthine oxidation in biological systems could also be accomplished along with xanthine, theophylline and caffeine atphysiological pH. The mechanistic aspects of the electro‐oxidation on the polymer modified electrode was also studied using linear sweep voltammetry. Chronoamperometry was employed to determine the diffusion coefficient of these xanthines. The developed sensor has been successfully demonstrated to be suitable for the determination of these compounds in real samples without much pre‐treatment.  相似文献   

17.
We have prepared a novel caffeine imprinted polymer on a stir bar that can be used for selective extraction of caffeine, theobromine and theophylline from beverages. The polymerization time and quantities of reagents (template, cross-linker, porogenic solvent) were optimized. The morphology of the molecularly imprinted polymer-coating was studied by scanning electron microscopy and Fourier transform IR spectroscopy. A rapid and sensitive method was worked out for the extraction of caffeine, theobromine and theophylline from beverages by using the molecularly imprinted stir bar followed by HPLC analysis. The effects of extraction solvent, stirring speed, desorption solvent, adsorption and desorption time were optimized. The method displays a linear response in the 5–150 μg L?1 caffein concentration range, with a correlation coefficient of >0.9904. The recoveries for three analytes in tea, carbonated and functional beverages were 91–108 %, 90–110 % and 93–109 %, with relative standard deviations ranging from 3.6–5.7 %, 3.5–7.9 % and 3.2–7.9 %, respectively.
Figure
A molecularly imprinted stir bar was prepared and applied for the selective extraction and sensitive determination of caffeine and its analogues in beverages by coupling with HPLC. The limits of detection were in the range of 1.24–2.25 μg L?1 (S/N?=?3) which are lower than those in published papers  相似文献   

18.
Isotope-dilution mass spectrometry has been employed successfully in numerous fields of analytical chemistry enabling the establishment of fast and reliable procedures. In equine sports, xanthine derivatives such as caffeine and theobromine are prohibited, and doping control laboratories analyze horse urine specimens regarding these illicit performance-enhancing drugs. Theobromine has to exceed a threshold level of 2 microg/mL, hence a robust and reliable quantitation is required. Stably deuterated theobromine and caffeine were synthesized by the reaction of xanthine or theobromine with iodomethane-d3 in the presence of N-methyl-N-trimethylsilyltrifluoroacetamide or potassium carbonate in acetonitrile, respectively. Both compounds were characterized by nuclear magnetic resonance spectroscopy and electrospray ionization tandem mass spectrometry, and a robust and fast assay for the qualitative and quantitative analysis of theobromine in equine urine samples was validated. Urine specimens were extracted by means of solid-phase extraction cartridges, and concentrated extracts were analyzed by liquid chromatography interfaced to a triple-quadrupole mass spectrometer. In addition, the dissociation behavior of deuterated analogues to caffeine and theobromine allowed proposals for fragmentation routes of xanthine derivatives after atmospheric pressure ionization and collisionally activated dissociation.  相似文献   

19.
An SPE method, using RP18 phases, for the simultaneous extraction of caffeine, theobromine, theophylline, paraxanthine, 1-methylxanthine, 3-methylxanthine, 7-methylxanthine, 1-methyluric acid, 1,3-dimethyluric acid, 1,7-dimethyluric acid, and 1,3,7-trimethyluric acid from urine has been developed. Besides a gradient HPLC system for the analysis of the compounds of interest on a LiChrosorb RP-18 (7 microm) column with mobile phase containing 0.05% aq. solution of trifluoroacetic acid and acetonitrile has been elaborated. The procedure has been successfully applied to the analysis of methylxanthines and methyluric acids in urine of patients with chronic asthma treated with theophylline and in urine of healthy subjects.  相似文献   

20.
A novel ion chromatographic method was proposed for the simultaneous determination of artificial sweeteners (sodium saccharin, aspartame, acesulfame-K), preservatives (benzoic acid, sorbic acid), caffeine, theobromine and theophylline. The separation was performed on an anion-exchange analytical column operated at 40 degrees C within 45 min by an isocratic elution with 5 mM aqueous NaH2PO4 (pH 8.20) solution containing 4% (v/v) acetonitrile as eluent, and the determination by wavelength-switching ultraviolet absorbance detection. The detection limits (signal-to-noise ratio 3:1) for all analytes were below the sub-microg/ml level. Under the experimental conditions, several organic acids, including citric acid, malic acid, tartaric acid and ascorbic acid, did not interfere with the determination. The method has been successfully applied to the analysis of various food and pharmaceutical preparations, and the average recoveries for real samples ranged from 85 to 104%. The levels of all analytes determined by this method were in good agreement with those obtained by the high-performance liquid chromatographic procedure. The results also indicated that ion chromatography would be possibly a beneficial alternative to conventional high-performance liquid chromatography for the separation and determination of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号