首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The negative ion mass spectra of sulphur, dinitriles and their mixtures were studied. The abundance of negative ions of sulphur was almost comparable to that of positive ions. In the negative ion mass spectrum of a mixture of sulphur and dinitrile, intense and characteristic peaks of [M + Sn]? (n = 2, 3, 4, etc.) were observed resulting from ion–molecule association of dinitrile with the Sn? anions. As a standard sample of a negative ion mass spectrum, sulphur itself has proved useful in the lower mass region (below m/e 256: S8?).  相似文献   

2.
N‐Boc/Fmoc/Z‐N′‐formyl‐gem‐diaminoalkyl derivatives, intermediates particularly useful in the synthesis of partially modified retro‐inverso peptides, have been characterized by both positive and negative ion electrospray ionization (ESI) ion‐trap multi‐stage mass spectrometry (MSn). The MS2 collision induced dissociation (CID) spectra of the sodium adduct of the formamides derived from the corresponding N‐Fmoc/Z‐amino acids, dipeptide and tripeptide acids show the [M + Na‐NH2CHO]+ ion, arising from the loss of formamide, as the base peak. Differently, the MS2 CID spectra of [M + Na]+ ion of all the N‐Boc derivatives yield the abundant [M + Na‐C4H8]+ and [M + Na‐Boc + H]+ ions because of the loss of isobutylene and CO2 from the Boc protecting function. Useful information on the type of amino acids and their sequence in the N‐protected dipeptidyl and tripeptidyl‐N′‐formamides is provided by MS2 and subsequent MSn experiments on the respective precursor ions. The negative ion ESI mass spectra of these oligomers show, in addition to [M‐H]?, [M + HCOO]? and [M + Cl]? ions, the presence of in‐source CID fragment ions deriving from the involvement of the N‐protecting group. Furthermore, MSn spectra of [M + Cl]? ion of N‐protected dipeptide and tripeptide derivatives show characteristic fragmentations that are useful for determining the nature of the C‐terminal gem‐diamino residue. The present paper represents an initial attempt to study the ESI‐MS behavior of these important intermediates and lays the groundwork for structural‐based studies on more complex partially modified retro‐inverso peptides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Low-energy reactive collisions between the negative molecular ion of a tetrachlorodibenzo-p-dioxin (TCDD) and oxygen inside the collision cell of a triple-stage quadrupole mass spectrometer produce a substitution ion [M ? Cl + O]?, a phenoxide ion [C6H4-nO2Cln], [M ? HCl], and Cl? by which 1,2,3,4-, 1,2,3,6/1,2,3,7- and 2,3,7,8-TCDD isomers can be distinguished either directly or on the basis of intensity ratios. The collision conditions have an important effect on the relative abundances. Energy- and pressure-resolved curves show that the ions formed by a collisionally activated reaction (CAR) process, i.e. [M ? Cl + O]? and [C6H4-n,O2Cln], are favoured by a high pressure of oxygen (3-6 mTorr) (1 Torr = 133.3 Pa) and a low collision energy (0.1-7 eV), whereas the ions formed by a collisionally activated dissociation (CAD) process, i.e. [M ? HCl] and Cl?, are favoured by high pressure and high energy. By choosing a relatively low collision energy (5 eV) and high pressure (4 mTorr), the CAR and CAD ions can be clearly detected.  相似文献   

4.
Long‐chain ferulic acid esters, such as eicosyl ferulate ( 1 ), show a complex and analytically valuable fragmentation behavior under negative ion electrospay collision‐induced dissociation ((?)‐ESI‐CID) mass spectrometry, as studied by use of a high‐resolution (Orbitrap) mass spectrometer. In a strong contrast to the very simple fragmentation of the [M + H]+ ion, which is discussed briefly, the deprotonated molecule, [M – H]?, exhibits a rich secondary fragmentation chemistry. It first loses a methyl radical (MS2) and the ortho‐quinoid [M – H – Me]‐? radical anion thus formed then dissociates by loss of an extended series of neutral radicals, CnH2n + 1? (n = 0–16) from the long alkyl chain, in competition with the expulsion of CO and CO2 (MS3). The further fragmentation (MS4) of the [M – H – Me – C3H7]? ion, discussed as an example, and the highly specific losses of alkyl radicals from the [M – H – Me – CO]‐? and [M – H – Me – CO2]‐? ions provide some mechanistic and structural insights.  相似文献   

5.
Negative chemical ionization mass spectrometry is used as a probe to examine reactions between hydrocarbon radicals and metal complexes in the gas phase. The methane negative chemical ionization mass spectra of 27 complexes of cobalt(II ), nickel(II ) and copper(II ) in the presence of O4, O2N2 and N4 donor atom sets are characterized by two dominant series of adduct ions of the form [M + CnH2n]? and [M + CnH2n+1]? at m/z values above the molecular ion, [M]?. Insertion of the CH radical into the ligand followed by radical/radical recombination and electron capture is proposed as the major mechanism leading to the formation of [M + CnH2n]? adduct ions. A second pathway involves ligand substitution by CnH2n+1 radicals concomitant with H elimination and electron capture. Oxidative addition at the metal followed by ionization is suggested as the principal pathway for the formation of [M + CnH2n+1]? adduct ions.  相似文献   

6.
The N2 negative ion chemical ionization (NICI) mass spectra of aniline, aminonaphthalenes, aminobiphenyls and aminoanthracenes show an unexpected addition appearing at [M + 11]. This addition is also observed in the N2 positive chemical ionization (PCI) mass spectra. An ion at [M – 15]? is found in the NICI spectra of aminoaromatics such as aniline, 1- and 2-aminonaphthalene and 1- and 2-aminoanthracene. Ion formation was studied using labeled reagents, variation of ion source pressure and temperature and examination of ion chromatograms. These experiments indicate that the [M + 11], [M – 15] and [M + 11] ions result from the ionization of analytes altered by surface-assisted reactions. Experiments with 15N2, [15N] aniline, [2,3,4,5,6-2H5] aniline and [13C6] aniline show that the [M + 11] ion corresponds to [M + N – 3H]. The added nitrogen originates from the N2 buffer gas and the addition occurs with loss of one ring and two amino group hydrogens. Fragmentation patterns in the N2 PCI mass spectrum of aniline suggest that the neutral product of the surface-assisted reaction is 1,4-dicyanobuta-1,3-diene. Experiments with diamino-substituted aromatics show analogous reactions resulting in the formation of [M – 4H] ions for aromatics with ortho-amino groups. Experiments with methylsubstituted aminoaromatics indicate that unsubstituted sites ortho to the amino group facilitate nitrogen addition, and that methyl groups provide additional sites for nitrogen addition.  相似文献   

7.
N-Acetylcysteine and nine N-acetylcysteine conjugates of synthetic origin were characterized by positive- and negative-ion plasma desorption mass Spectrometry. For sample preparation the electrospray technique and the nitrocellulose spin deposition technique were applied. The fragmentation of these compounds, which are best seen as S-substituted desaminoglycylcysteine dipeptides, shows a similar behaviour to that of linear peptides. In the positive-ion mass spectra intense protonated molecular ion peaks are observed. In addition, several sequence-specific fragment ions (A+, B+, [Y + 2H]+, Z+), immonium ions (I+) and a diagnostic fragment ion for mercap-turic acids (RM+) are detected. The negative-ion mass spectra exhibit deprotonated molecular ions and in contrast only one fragment ion corresponding to side-chain specific cleavage ([RXS]?) representing the xenobiotic moiety. In the case of a low alkali metal concentration on the target, cluster molecular ions of the [nM + H]+ or [nM - H]? ion type (n = 1-3) are observed. The analysis of an equimolar mixture of eight N-acetylcysteine conjugates shows different quasi-molecular ion yields for the positive- and negative-ion spectra.  相似文献   

8.
Conyza blinii Le'vl is a medicinal herb used for the treatment of inflammation in Chinese folk medicine. Its major bioactive constituents are triterpene saponins, most of which contain 6–8 sugar residues. In this report, electrospray ionization tandem mass spectrometry fragmentation behaviors of bisdesmosidic triterpene saponins (conyzasaponin A, B, and C) were studied in both positive and negative ion modes with an ion‐trap mass spectrometer. In full scan mass spectrometry, these saponins gave predominant [M–H]? and [M+Na]+ ions, which determined the molecular weights. In tandem mass spectrometry (MSn, n = 2–4), the [M–H]? and [M+Na]+ ions yielded fragments [Y–H]? and [Bα+Na]+, which were diagnostic for the structures of the triterpene skeleton and sugar chains. The structural elucidation was approved by accurate mass data using IT‐TOF‐MS. An interpretation guideline based on MSn (n = 2–4) diagnostic ions was proposed in order to elucidate the chemical structures of unknown triterpene saponins in C. blinii extract. The saponins in C. blinii were separated by liquid chromatography with a methanol/acetonitrile/water solvent system, and then analyzed by ion‐trap and IT‐TOF mass spectrometers. Based on the interpretation guideline, a total of 35 triterpenoid saponins were tentatively identified. Among them, 15 saponins had been previously reported, and the other 20 saponins were reported from Conyza species for the first time. This study indicates that LC/MS is a powerful technology for the rapid characterization of complicated saponins in herbal extracts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The laser desorption mass spectrometry of the oxocarbon squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) and its salts of the form A2C4O4 (A = cation) is described. Both positive and negative ion spectra were obtained. The positive ion spectrum of the acid is characterized by an ion corresponding to loss of CO from [M + H]+. The negative ion spectrum shows an intense [M ? H]? peak in addition to a dimer species. The alkali salt spectra contain [M + A]+ in the positive mode and [M ? A]? and an intense [C4HO4]? in the negative mode. The smaller alkali salts also have an [M + H]+ adduct ion. Unlike the alkali squarates, the ammonium salt shows ions corresponding to losses of neutrals from the molecular adduct in the positive ion spectrum and a dimer species in the negative ion spectrum. Molecular weight information was obtained in all cases. A (bis) dicyanomethylene derivative of potassium squarate was also studied. Some field desorption mass spectrometry results are presented for comparison.  相似文献   

10.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Isoflavone mono‐O‐glycosides were investigated by electrospray ionization tandem mass spectrometry with a quadrupole linear ion trap mass spectrometer in negative ion mode. Isoflavonoids having different positions of glycosylation or methylation were differentiated according to the relative abundances of Y0? and [Y0? H]?? ions generated from the [M ? H]? ion. It is found that the site of glycosyl or methyl group significantly affects relative abundances of the Y0? and [Y0? H]?? ions. In addition, the characteristic ion [Y0? 2H]? was observed in the product ion spectrum of genistein 7‐O‐β‐D ‐glucoside and was also detected, together with the [Y0? CH3]?? and [Y0? H ? CH3]? ions in the product ion spectra of glycitin and 6‐methoxy genistein 7‐O‐β‐D ‐glucoside. The structures of isoflavonoids can be characterized and identified according to the formation of these diagnostic ions. The results obtained from this investigation can promote the rapid identification of isoflavonoids in crude plant extracts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The effects of the identity and position of basic residues on peptide dissociation were explored in the positive and negative modes. Low‐energy collision‐induced dissociation (CID) was performed on singly protonated and deprotonated heptapeptides of the type: XAAAAAA, AAAXAAA, AAAAAXA and AAAAAAX, where X is arginine (R), lysine (K) or histidine (H) residues and A is alanine. For [M + H]+, the CID spectra are dominated by cleavages adjacent to the basic residues and the majority of the product ions contain the basic residues. The order of a basic residue's influence on fragmentation of [M + H]+ is arginine > histidine ≈ lysine, which is also the order of decreasing gas‐phase basicity for these amino acids. These results are consistent with the side chains of basic residues being positive ion charge sites and with the more basic arginine residues having a higher retention (i.e. sequestering) of the positive charge. In contrast, for [M ? H]? the identity and position of basic residues has almost no effect on backbone fragmentation. This is consistent with basic residues not being negative mode charge sites. For these peptides, more complete series of backbone fragments, which are important in the sequencing of unknowns, can be found in the negative mode. Spectra at both polarities contain C‐terminal y‐ions, but yn+ has two more hydrogens than the corresponding yn?. Another major difference is the production of the N‐terminal backbone series bn+ in the positive mode and cn? in the negative mode. Thus, comparison of positive and negative ion spectra with an emphasis on searching for pairs of ions that differ by 2 Da (yn+ vs yn?) and by 15 Da (bn+ vs cn?) may be a useful method for determining whether a product ion is generated from the C‐terminal or the N‐terminal end of a peptide. In addition, a characteristic elimination of NH?C?NH from arginine residues is observed for deprotonated peptides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Analyses of a series of nitroaromatic compounds using fast atom bombardment (FAB) mass spectrometry are discussed. An interesting ion-molecule reaction leading to [M + O ? H]? ions is observed in the negative ion FAB spectra. Evidence from linked-scan and collision-induced dissociation spectra proved that [M + O ? H]? ions are produced by the following reaction: M + NO2? → [M + NO2]? → [M + O ? H]?. These experiments also showed that M ions are produced in part by the exchange of an electron between M and NO2? species. All samples showed M, [M ? H]? or both ions in their negative ion FAB spectra. Not all analytes studied showed either [M + H]+ and/or M+˙ in the positive ion FAB spectra. No M+˙ ions were observed for ions having ionization energies above ~9 eV.  相似文献   

14.
Electron attachment reactions of a series of (η6-arene)tricarbonylchromium(O) complexes have been examined in the gas phase. The electron capture process has been shown to be influenced by the structure of the η6-arene ligand and its substituents. Whereas (η6-benzene)- and (η6-mesitylene)tricarbonylchromium(O) undergo dissocative electron capture, or reductive decarbonylation, yielding [M? CO]?˙ ions of highest abundance in their negative ion mass spectra, [η6-(2,2-dimethylindan-1,3-dione)]tricarbonylchromium(O) forms a molecular negative ion which undergoes sequential CO eliminations and finally a demetallation to give the arene radical ion. A localization of charge on the coordinated arene ligand is proposed for the formation of [M]?˙ in this case. (η6-Methylbenzoate)tricarbonylchromium(O) also forms a molecular negative ion by secondary electron attachment which decomposes by simultaneous and consecutive eliminations of up to four CO molecules. The elucidation of a mechanism and sequence for these CO eliminations has been achieved by synthesizing and examining the negative ion mass spectrum of [η6-(C6H5·13CO2Me)]Cr(CO)3. The first CO loss in the principal fragmentation pathway occurs solely from the –Cr(CO)3 group of [M]?˙. The effect of para substituent groups on the stabilities of molecular negative ions and their fragmentations has been ascertained using a series of para-substituted (η6-methylbenzoate)tricarbonylchromium(O) compounds containing the groups NH2, OH, OCH3, CL and COOMe. The stabilities of the [M]?˙ ions have been rationalized in terms of the Hammett and Taft parameters σP, σI, σRP, σPO and σRO. The overall electronic substituent effect transmitted to the carbonyl groups of the –Cr(CO)3 unit involves both resonance and inductive components. In this series of compounds the stability of [M]?˙ decreases as the electron withdrawing capacities of the para substituents increase.  相似文献   

15.
Chemical ionization mass spectra of several ethers obtained with He/(CH3)4Si mixtures as the reagent gases contain abundant [M + 73]+ adduct ions which identify the relative molecular mass. For the di-n-alkyl ethers, these [M + 73]+ ions are formed by sample ion/sample molecule reactions of the fragment ions, [M + 73 ? CnH2n]+ and [M + 73 ? 2CnH2n]+. Small amounts of [M + H]+ ions are also formed, predominantly by proton transfer reactions of the [M + 73 ? 2CnH2n]+ or [(CH3)3SiOH2]+ ions with the ethers. The di-s-alkyl ethers give no [M + 73] + ions, but do give [M + H]+ ions, which allow the determination of the relative molecular mass. These [M + H]+ ions result primarily from proton transfer reactions from the dominant fragment ion, [(CH3)3SiOH2]+ with the ether. Methyl phenyl ether gives only [M + 73]+ adduct ions, by a bimolecular addition of the trimethylsilyl ion to the ether, not by the two-step process found for the di-n-alkyl ethers. Ethyl phenyl ether gives [M + 73]+ by both the two-step process and the bimolecular addition. Although the mass spectra of the alkyl etherr are temperature-dependent, the sensitivities of the di-alkyl ethers and ethyl phenyl ether are independent of temperature. However, the sensitivity for methyl phenyl ether decreases significantly with increasing temperature.  相似文献   

16.
The negative ion mass spectra of dicarboxylic acids show [M]?˙ and prominent [M – H]?ions. These ions can therefore be used to determine the molecular weight of dicarboxylic acids which do not give positive molecular ions. The [C2H3]? ion is a base peak in the spectra of maleic and fumaric acids. Isomeric phthalic acids are readily differentiated.  相似文献   

17.
A collisional induced dissociation study of 1,3,5-trinitro-1,3,5 triazacyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) was carried out using mass analyzed kinetic energy spectrometry. High resolution mass spectra and mass analyzed ion kinetic energy/collisional induced dissociation spectra of RDX and HMX were recorded in the electron impact, chemical ionization and negative ion chemical ionization modes. Fragmentation pathways of the compounds investigated were determined in all three modes of ionization. It was found that a major part of the fragment ions in RDX and HMX originate from formation of the aduct ions [M+NO]+ and [M+NO2]+ in electron impact and chemical ionization, and from [M+NO]? and [M+NO2]? in negative chemical ionization, followed by dissociation.  相似文献   

18.
Negative ion chemical ionization (NICI) mass spectra with methane as reagent gas and the ion abundance ratios of the negative to the positive base peak for 51 polycyclic aromatic hydrocarbons and related compounds were measured and evaluated for highly sensitive detection and isomer differentiation. Either [M ? H]?, M?˙ or MH? was the base peak, except for one compound with [M ? H2]?˙ as its base peak. The numbers of compounds with [M ? H]?, M?˙ or MH? as their base peaks were 17, 26 and 7, respectively. Many of the compounds with [M ? H]? as the base peak had an aliphatic part in their structure. The average value of N/P (negative/positive ion abundance ratio at the base peaks) was < 1. Many of the compounds with M?˙ as the base peak had a relatively high electron affinity. A correlation between electron affinities and ion abundances was found. In most cases, the N/P ratios were > 1, and even reached 400 in benzo [a] pyrene. Many of the compounds with MH? as their base peaks had a phenyl group, in which cases the N/P ratios were < 1. In the case of compounds with 18 or fewer carbon atoms, in particular, it was easy to distinguish isomers by comparing their NICI mass spectra. The N/P values served as a guideline in sensitive detection. Nine compounds achieved an N/P of ≥50.  相似文献   

19.
The distinction between 17-epimeric 3,17-dioxygenated hydroxyandrostanes has been made by comparison of both their methane or ammonia positive and OH? negative chemical ionization (CI) mass spectra. In the methane or ammonia positive CI, the 17α-configuration in the eight stereoisomeric 5ξ-androstane-3ξ,17ξ-diols can be determined by the relative abundances of the ion [MH? 2 H2O]+. In the ammonia CI spectra, the ion [M+NH4? H2O]+ possesses only a low abundance, but a comparison of the relative rates of the loss of water v. the loss of ammonia from [M.NH4]+ in the second field-free region allows a clear distinction to be made between the 17α- and 17β-series. In the OH? negative CI mass spectra, the 5ξ-androstane-3-one-17ξ-ols produce an intense ion [M? H? H2O]? in the 17α-series only.  相似文献   

20.
The O2–N2 and O2–Ar negative-ion chemical ionization mass spectra of aromatic amines show a series of unusual ions dominated by an addition appearing at [M + 14]. Other ions are observed at [M – 12], [M + 5], [M + 12], [M + 28] and [M + 30]. Ion formation was studied using a quadrupole instrument equipped with a conventional chemical ionization source and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. These studies, which included the examination of ion chromatograms, measurement of positive-ion chemical ionization mass spectra, variation of ion source temperature and pressure and experiments with 18O2, indicate that the [M + 14] ion is formed by the electron-capture ionization of analytes altered by surfaceassisted reactions involving oxygen. This conversion is also observed under low-pressure conditions following source pretreatment with O2. Experiments with [15N]aniline, [2,3,4,5,6-2H5] aniline and [13C6]aniline show that the [M + 14] ion corresponds to [M + O ? 2H], resulting from conversion of the amino group to a nitroso group. Additional ions in the spectra of aromatic amines also result from surface-assisted oxidation reactions, including oxidation of the amino group to a nitro group, oxidation and cleavage of the aromatic ring and, at higher analyte concentrations, intermolecular oxidation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号