首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on Reddy's layerwise theory, the governing equations for dynamic response of viscoelastic laminated plate are derived by using the quadratic interpolation function for displacement in the direction of plate thickness. Vibration frequencies and loss factors are calculated for free vibration of simply supported viscoelastic sandwich plate, showing good agreement with the results in the literature. Harmonious transverse stresses can be obtained. The results show that the transverse shear stresses are the main factor to the delamination of viscoelastic laminated plate in lower-frequency free vibration, and the transverse normal stress is the main one in higher-frequency free vibration. Relationship between the modulus of viscoelastic materials and transverse stress is analyzed. Ratio between the transverse stress's maximum value and the in-plane stress's maximum-value is obtained. The results show that the proposed method, and the adopted equations and programs are reliable.  相似文献   

2.
A refined non-linear first-order theory of multilayered anisotropic plates undergoing finite deformations is elaborated. The effects of the transverse shear and transverse normal strains, and laminated anisotropic material response are included. On the basis of this theory, a simple and efficient finite element model in conjunction with the total Lagrangian formulation and Newton-Raphson method is developed. The precise representation of large rigid-body motions in the displacement patterns of the proposed plate elements is also considered. This consideration requires the development of the strain-displacement equations of the finite deformation plate theory with regard to their consistency with the arbitrarily large rigid-body motions. The fundamental unknowns consist of six displacements and 11 strains of the face planes of the plate, and 11 stress resultants. The element characteristic arrays are obtained by using the Hu-Washizu mixed variational principle. To demonstrate the accuracy and efficiency of this formulation and compare its performance with other non-linear finite element models reported in the literature, extensive numerical studies are presented.  相似文献   

3.
The purpose of this theoretical work is to present a stabilization problem of beam with shear deformations and rotary inertia effects. A velocity feedback and particular polarization profiles of piezoelectric sensors and actuators are introduced. The structure is described by partial differential equations with time-dependent coefficient including transverse and rotary inertia terms, general deformation state with interlaminar shear strains. The first order deformation theory is utilized to investigate beam vibrations. The beam motion is described by the transverse displacement and the slope. The almost sure stochastic stability criteria of the beam equilibrium are derived using the Liapunov direct method. If the axial force is described by the stationary and continuous with probability one process the classic differentiation rule can be applied to calculate the time-derivative of functional. The particular problem of beam stabilization due to the Gaussian and harmonic forces is analyzed in details. The influence of the shear deformations, rotary inertia effects and the gain factors on dynamic stability regions is shown.  相似文献   

4.
唐媛  卿海 《应用力学学报》2020,(2):785-792,I0023
基于修正偶应力理论及表面弹性理论,本文提出了一种新的双曲线剪切变形梁模型,用于均匀微尺度梁的静态弯曲分析。该理论可以直接利用本构关系获得横向剪切应力,满足梁顶部和底部的无应力边界条件,避免了引入剪切修正因子。根据广义Young-Laplace方程建立了梁的内部与表面层的应力连续性条件,单一的变量场可以描述梁的位移模式。通过在位移场中考虑表面层厚度以及表面层的应力连续条件,可以使新模型能够更准确地预测微尺寸和表面能相关的尺度效应。通过Hamilton原理推导出了梁的控制方程和边界条件。应变能除了考虑经典弹性理论,还要考虑微结构效应和表面能。Navier-type的解析解适用于简支边界条件,而基于拉格朗日插值的微分求积法(DQEM)可以研究在不同边界条件下的力学响应。把该数值解与Navier方法得出的解析解作了对比,得出:微尺度梁在考虑表面能或微尺寸效应、不同载荷和梁高变化下的响应一致;当不考虑微结构相关性和表面能效应时,该模型退化为经典的欧拉梁模型。  相似文献   

5.
基于修正偶应力和高阶剪切理论建立了仅含有一个尺度参数的Reddy变截面微梁的自由振动模型,研究了变截面微梁自由振动问题的尺度效应和横向剪切变形对自振频率计算的影响。基于哈密顿原理推导了动力学方程与边界条件,并采用微分求积法求解了各种边界条件下的自振频率。算例结果表明,基于偶应力理论预测的变截面微梁的自振频率均大于经典梁理论的预测结果,即捕捉到了尺度效应。另外,梁的几何尺寸与尺度参数越接近,尺度效应就越明显,而梁的长细比越小,横向剪切变形对自振频率的影响就越明显。  相似文献   

6.
The vibration suppression analysis of a simply-supported laminated composite beam with magnetostrictive layers resting on visco-Pasternak’s foundation is presented.The constant gain distributed controller of the velocity feedback is utilized for the purpose of vibration damping.The formulation of displacement field is proposed according to Euler-Bernoulli’s classical beam theory(ECBT),Timoshenko’s first-order beam theory(TFBT),Reddy’s third-order shear deformation beam theory,and the simple sinu...  相似文献   

7.
The contact problem of a straight orthotropic beam pressed onto a rigid circular surface is considered using beam theories that account for transverse shear and transverse normal deformations. The circular nature of the rigid surface emphasizes the difference between Euler Bernoulli theory behavior, where point loads develop at the edge of contact, and the higher order theories that predict non-singular pressure distributions. While Timoshenko beam theory is the simplest theory that addresses this behavior, the prediction of a maximum value of pressure at the edge of contact contradicts the elasticity theory result that contact pressure must drop to zero. Transverse normal strain is therefore introduced, both to study this fundamental discrepancy and to include an important effect in many contact problems. To investigate this effect, higher order beam theories that account for both constant and linear transverse normal strain through the beam thickness are derived using the principle of virtual work. The resulting orthotropic beam theories depend on the bending stiffness (EI), shear stiffness (GA), axial stiffness (EA1) and transverse normal stiffness (EA2), which are independent stiffness parameters that can differ by orders of magnitude. The above mentioned contact problem is then solved analytically for these theories, along with the Timoshenko beam model which assumes zero transverse normal strain. The results for different orthotropic materials show that inclusion of transverse normal deformation has a significant effect on the contact pressure solution. Furthermore, the solution using higher order beam theories encompasses the two extremes of a Hertz-like contact pressure when the half contact length is smaller than the thickness of the beam, and the Timoshenko beam theory case when the half contact length is much larger than the thickness. Concerning the behavior of the pressure at the edge of contact, adherence to the boundary conditions required by the principle of virtual work, shows that while the pressure does tend to zero, it does not become zero unless artificially enforced. In this regard the solution for the case of linear strain is better than that for constant strain. All beam solutions are validated with plane elasticity solutions obtained using the commercial finite element software ABAQUS.  相似文献   

8.
This work extends a previously presented coupled refined layerwise theory to dynamic analysis of piezoelectric laminated composite and sandwich beams. Contrary to most of the available theories, all the kinematic and stress boundary conditions are satisfied at the interfaces of the piezoelectric layers with the non-zero longitudinal electric field. Moreover, both electrical transverse normal strains and transverse flexibility are taken into account for the first time in the present theory. In the presented formulation a high-order polynomial, an exponential expression and a layerwise term containing the electric field are included in the describing expression of the in-plane displacement of the beam. For the transverse displacement, the coupled refined model uses a combination of continuous piecewise fourth-order polynomials with a layerwise representation of electrical unknowns. The electric field is also approximated as linear across the thickness direction of piezoelectric layers. One of advantages of the present theory is that the mechanical number of the unknown parameters is very small and is independent of the number of the layers. For validation of the proposed model, various free and forced vibration tests for thin and thick laminated/sandwich piezoelectric beams are carried out. For various electrical and mechanical boundary conditions, excellent correlation has been found between the results obtained from the proposed formulation with those resulted from the three-dimensional theory of piezoelasticity.  相似文献   

9.
In the present study, a coupled refined high-order global-local theory is developed for predicting fully coupled behavior of smart multilayered/sandwich beams under electromechanical conditions. The proposed theory considers effects of transverse normal stress and transverse flexibility which is important for beams including soft cores or beams with drastic material properties changes through depth. Effects of induced transverse normal strains through the piezoelectric layers are also included in this study. In the presence of non-zero in-plane electric field component, all the kinematic and stress continuity conditions are satisfied at layer interfaces. In addition, for the first time, conditions of non-zero shear and normal tractions are satisfied even while the bottom or the top layer of the beam is piezoelectric. A combination of polynomial and exponential expressions with a layerwise term containing first order differentiation of electrical unknowns is used to introduce the in-plane displacement field. Also, the transverse displacement field is formulated utilizing a combination of continuous piecewise fourth-order polynomial with a layerwise representation of electrical unknowns. Finally, a quadratic electric potential is used across the thickness of each piezoelectric layer. It is worthy to note that in the proposed shear locking-free finite element formulation, the number of mechanical unknowns is independent of the number of layers. Excellent correlation has been found between the results obtained from the proposed formulation for thin and thick piezoelectric beams with those resulted from the three-dimensional theory of piezoelasticity. Moreover, the proposed finite element model is computationally economic.  相似文献   

10.
梁作为最简单的构件在工程中广泛应用. 由于经典梁理论在求解梁的切应力时需要引入平衡方程和剪切修正系数, 使得求解问题变得复杂. 该文采用高阶勒让德级数形式的位移函数, 并考虑上下边界处切应力为零的特点, 建立了梁的切应力的求解方法. 并将所得的理论结果与有限元方法的数值结果进行比较, 结果符合很好. 结果表明, 该文的理论模型能够准确地确定梁内部的正应力和切应力. 该文的研究可为梁的力学分析提供新的理论方法.  相似文献   

11.
Novel interface deformable bi-layer beam theory is developed to account for local effects at crack tip of bi-material interface by modeling a bi-layer composite beam as two separate shear deformable sub-layers with consideration of crack tip deformation. Unlike the sub-layer model in the literature in which the crack tip deformations under the interface peel and shear stresses are ignored and thus a “rigid” joint is used, the present study introduces two interface compliances to account for the effect of interface stresses on the crack tip deformation which is referred to as the elastic foundation effect; thus a flexible condition along the interface is considered. Closed-form solutions of resultant forces, deformations, and interface stresses are obtained for each sub-layer in the bi-layer beam, of which the local effects at the crack tip are demonstrated. In this study, an elastic deformable crack tip model is presented for the first time which can improve the split beam solution. The present model is in excellent agreements with analytical 2-D continuum solutions and finite element analyses. The resulting crack tip rotation is then used to calculate the energy release rate (ERR) and stress intensity factor (SIF) of interface fracture in bi-layer materials. Explicit closed-form solutions for ERR and SIF are obtained for which both the transverse shear and crack tip deformation effects are accounted. Compared to the full continuum elasticity analysis, such as finite element analysis, the present solutions are much explicit, more applicable, while comparable in accuracy. Further, the concept of deformable crack tip model can be applied to other bi-layer beam analyses (e.g., delamination buckling and vibration, etc.).  相似文献   

12.
In this paper, the flutter characteristics of sandwich panels with carbon nanotube (CNT) reinforced face sheets are investigated using QUAD-8 shear flexible element developed based on higher-order structural theory. The formulation accounts for the realistic variation of the displacements through the thickness, the possible discontinuity in the slope at the interface, and the thickness stretch affecting the transverse deflection. The in-plane and rotary inertia terms are also included in the formulation. The first-order high Mach number approximation to linear potential flow theory is employed for evaluating the aerodynamic pressure. The solutions of the complex eigenvalue problem, developed based on Lagrange׳s equation of motion are obtained using the standard method for finding the eigenvalues. The accuracy of the present formulation is demonstrated considering the problems for which solutions are available. A detailed numerical study is carried out to bring out the efficacy of the higher-order model over the first-order theory and also to examine the influence of the volume fraction of the CNT, core-to-face sheet thickness, the plate thickness and the aspect ratio, damping and the temperature on the flutter boundaries and the associated vibration modes.  相似文献   

13.
Column constitutive relationships and buckling equations are derived using a consistent hyperelastic neo-Hookean formulation. It is shown that the Mandel stress tensor provides the most concise representation for stress components. The analogous definitions for uniaxial beam plane stress and plane strain for large deformations are established by examining the virtual work equations. Anticlastic transverse curvature of the beam cross-section is incorporated when plane stress or thick beam dimensions are assumed. Column buckling equations which allow for shear and axial deformations are derived using the positive definiteness of the second order work. The buckling equations agree with the equation derived by Haringx and are extended to incorporate anticlastic transverse curvature which is important for low slenderness, high buckling modes and with increasing width to thickness ratio. The work in this paper does not support the existence of a shear buckling mode for straight prismatic columns made of an isotropic material.  相似文献   

14.
考虑面板和夹芯的面内刚度和横向剪切刚度以及抗弯刚度,考虑了高阶剪切变形,根据横向剪应变分布情况给出横向剪切转角的位移函数,基于哈密尔顿原理,推导了基于高阶变形理论、适用于软、硬夹芯情况夹层板的基本方程.作为算例,以四边简支条件下的夹层板的弯曲与振动,在不同的面板与芯层的弹性模量比和厚度比下进行了计算,并与Reissner理论、Hoff理论以及邓宗白基于Reissner理论的修正模型的计算结果进行了对比.与前述理论与方法相比,论文方法考虑因素更为全面,对夹层板的适用范围更为广泛,计算结果更为精确.针对Nastran软件计算夹层板的振动问题,对其适用范围作了简要分析.  相似文献   

15.
基于LCF-Kriging模型的结构多失效模式可靠度计算   总被引:1,自引:0,他引:1  
针对多失效模式下结构体系可靠度计算中的代理模型构建成本与计算精度如何权衡的问题,本文以减小体系失效概率预测方差为出发点,推导出最大贡献函数(LCF-Largest Contribution Function)来识别对体系失效概率方差影响较大的样本。LCF函数可减少对体系失效概率方差影响较小区域内样本数量,进而提高代理模型的计算效率;通过置信水平和允许相对误差建立LCF函数的学习停止条件,能够保证已有样本信息不浪费。本文选取能够对多个功能函数联合构建的多输出Kriging模型作为代理模型,基于LCF-Kriging模型并结合MCS对体系可靠度进行计算,功能函数的相关性可通过各失效模式的逻辑关系予以考虑。数值算例表明,在适当的学习停止条件下,对于串联、并联和串并混联的结构体系可靠度评估,本文方法均能在计算精度和计算效率之间达到满意平衡。  相似文献   

16.
In this paper, a simple and robust constitutive model is proposed to simulate mechanical behaviors of hyper-elastic materials under bi-axial normal-shear loadings in the finite strain regime. The Mooney–Rivlin strain energy function is adopted to develop a two-dimensional (2D) normal-shear constitutive model within the framework of continuum mechanics. A motion field is first proposed for combined normal and shear deformations. The deformation gradient of the proposed field is calculated and then substituted into right Cauchy–Green deformation tensor. Constitutive equations are then derived for normal and shear deformations. They are two explicit coupled equations with high-level polynomial non-linearity. In order to examine capabilities of the developed hyper-elastic model, uniaxial tensile responses and non-linear stability behaviors of moderately thick straight and curved beams undergoing normal axial and transverse shear deformations are simulated and compared with experiments. Fused deposition modeling technique as a 3D printing technology is implemented to fabricate hyper-elastic beam structures from soft poly-lactic acid filaments. The printed specimens are tested under tensile/compressive in-plane and compressive out-of-plane forces. A finite element formulation along with the Newton–Raphson and Riks techniques is also developed to trace non-linear equilibrium path of beam structures in large defamation regimes. It is shown that the model is capable of predicting non-linear equilibrium characteristics of hyper-elastic straight and curved beams. It is found that the modeling of shear deformation and finite strain is essential toward an accurate prediction of the non-linear equilibrium responses of moderately thick hyper-elastic beams. Due to simplicity and accuracy, the model can serve in the future studies dealing with the analysis of hyper-elastic structures in which two normal and shear stress components are dominant.  相似文献   

17.
采用双向梁函数组合级数逼近的方法构造粘-弹层合悬臂板的横向位移函数,用里兹法得悬臂板在集中力作用下的弯曲变形。用拉格朗日方程求出了板自由振动的频率和结构损耗因子;给出粘-弹层合悬臂板在集中力突然撤去以后瞬态响应的近似解析解。另外,分析了阻尼层损耗因子、弹性模量及厚度对响应的影响。  相似文献   

18.
A higher order zig-zag shell theory based on general tensor formulation is developed to refine the predictions of the mechanical, thermal, and electric behaviors. All the complicated curvatures of surface including twisting curvatures can be described in a geometrically exact manner in the present shell theory because the present theory is based on the geometrically exact surface representation. The in-surface displacement fields are constructed by superimposing the linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface free conditions of transverse shear stresses. Thus the proposed theory has only seven primary displacement unknowns and they do not depend upon the number of layers. To assess the validity of present theory, the developed theory is evaluated under the thermal and electric load as well as under the mechanical load of composite cylindrical shells. Through the numerical examples, it is demonstrated that the proposed smart shell theory is efficient because it has the minimal degrees of freedom. The present theory is suitable in the predictions of deformation and stresses of thick smart composite shells under the mechanical, thermal, and electric loads combined.  相似文献   

19.
A microstructure-dependent Timoshenko beam model is developed using a variational formulation. It is based on a modified couple stress theory and Hamilton's principle. The new model contains a material length scale parameter and can capture the size effect, unlike the classical Timoshenko beam theory. Moreover, both bending and axial deformations are considered, and the Poisson effect is incorporated in the current model, which differ from existing Timoshenko beam models. The newly developed non-classical beam model recovers the classical Timoshenko beam model when the material length scale parameter and Poisson's ratio are both set to be zero. In addition, the current Timoshenko beam model reduces to a microstructure-dependent Bernoulli-Euler beam model when the normality assumption is reinstated, which also incorporates the Poisson effect and can be further reduced to the classical Bernoulli-Euler beam model. To illustrate the new Timoshenko beam model, the static bending and free vibration problems of a simply supported beam are solved by directly applying the formulas derived. The numerical results for the static bending problem reveal that both the deflection and rotation of the simply supported beam predicted by the new model are smaller than those predicted by the classical Timoshenko beam model. Also, the differences in both the deflection and rotation predicted by the two models are very large when the beam thickness is small, but they are diminishing with the increase of the beam thickness. Similar trends are observed for the free vibration problem, where it is shown that the natural frequency predicted by the new model is higher than that by the classical model, with the difference between them being significantly large only for very thin beams. These predicted trends of the size effect in beam bending at the micron scale agree with those observed experimentally. Finally, the Poisson effect on the beam deflection, rotation and natural frequency is found to be significant, which is especially true when the classical Timoshenko beam model is used. This indicates that the assumption of Poisson's effect being negligible, which is commonly used in existing beam theories, is inadequate and should be individually verified or simply abandoned in order to obtain more accurate and reliable results.  相似文献   

20.

In this two-part contribution, a boundary element method is developed for the nonlinear dynamic analysis of beams of arbitrary doubly symmetric simply or multiply connected constant cross section, undergoing moderate large displacements and small deformations under general boundary conditions, taking into account the effects of shear deformation and rotary inertia. In Part I the governing equations of the aforementioned problem have been derived, leading to the formulation of five boundary value problems with respect to the transverse displacements, to the axial displacement and to two stress functions. These problems are numerically solved using the Analog Equation Method, a BEM based method. In this Part II, numerical examples are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. Thus, the results obtained from the proposed method are presented as compared with those from both analytical and numerical research efforts from the literature. More specifically, the shear deformation effect in nonlinear free vibration analysis, the influence of geometric nonlinearities in forced vibration analysis, the shear deformation effect in nonlinear forced vibration analysis, the nonlinear dynamic analysis of Timoshenko beams subjected to arbitrary axial and transverse in both directions loading, the free vibration analysis of Timoshenko beams with very flexible boundary conditions and the stability under axial loading (Mathieu problem) are presented and discussed through examples of practical interest.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号