首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The interaction of selenate, selenite, and chromate with the hydrated surface of γ-Al2O3 was studied using a combination of macroscopic pH edge data, electrophoretic mobility measurements, and X-ray absorption spectroscopic analyses. The pH edge data show generally increased oxyanion adsorption with decreasing pH, and indicate ionic strength-(in)dependent adsorption of chromate and selenate across the pH range 4–9, and ionic strength-(in)dependent adsorption of selenite in this pH range. The adsorption of chromate peaks at pH 5.0, whereas for selenate and selenite no pH adsorption maxima are observed. Electrophoretic mobility measurements show that all three oxyanions decrease the zeta potential of γ-Al2O3 upon adsorption; however, only selenite decreased the pHPZC of the γ-Al2O3 sorbent. EXAFS data indicate that selenite ions are coordinated in a bridging bidentate fashion to surface AlO6 octahedra, whereas no second-neighbor Al scattering was observed for adsorbed selenate ions. Combined, the results presented here show that pH is a major factor in determining the extent of adsorption of selenate, selenite, and chromate on hydrated γ-Al2O3. The results point to substantial differences between these anions as to the mode of adsorption at the hydrated γ-Al2O3 surface, with selenate adsorbing as nonprotonated outer-sphere complexes, chromate forming a mixture of monoprotonated and nonprotonated outer-sphere adsorption complexes, and selenite coordinating as inner-sphere surface complexes in bridging configuration.  相似文献   

2.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

3.
Mesoporous YSZ–γ-Al2O3 membranes were coated on α-Al2O3 (Ø2 mm) tube by dipping the α-Al2O3 support tube into mixed sol consists of nano-size YSZ and bohemite particles followed by drying and calcination at 600 °C. Addition of bohemite in YSZ sol helped a good adhesion and uniform coating of the membrane film onto α-Al2O3 support. The quality of the mesoporous YSZ–γ-Al2O3 membranes was evaluated by the gas permeability experiments. The number of defects was minimized when the γ-Al2O3 content became more than 40%. Addition of γ-Al2O3 inhibited the crystal growth of YSZ, sintering shrinkage and distortion stress. Increase of calcination temperature and time results in the increase of pore size and N2 permeance. A hydrogen perm-selective membrane was prepared by filling palladium into the nano-pores of YSZ–γ-Al2O3 layer by vacuum-assisted electroless plating. Crystal growth of palladium was observed by thermal annealing of the membrane at 600 °C for 40 h. The Pd–YSZ–γ-Al2O3 composite membrane revealed improved thermal stability allowing long-term operation at elevated temperature (>500 °C). This has been attributed to the improved fracture toughness of YSZ–γ-Al2O3 layer and matching of thermal expansion coefficient between palladium and YSZ. Although fracture of the membrane did not occur, decline of H2 flux was observed when the membrane was exposed in 600 °C. This has been attributed to the agglomeration of palladium particles by crystal growth and dense packing into the pore networks of YSZ–γ-Al2O3 by elevation of temperature.  相似文献   

4.
In this paper, we have reported the preparation of low cost γ-Al2O3 membrane on a macroporous clay support by dip-coating method. For the synthesis of γ-Al2O3 top layer on the support, a stable boehmite sol is prepared using aluminium chloride salt as a starting material by sol–gel route. The structural properties of the composite membrane as well as γ-Al2O3 powder is carried out using scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption–desorption isotherm data, Fourier transform infrared analysis (FTIR) and dynamic light scattering (DLS) analysis. The mean particle size of the boehmite sol used for coating is found to be 30.9 nm. The pore size distribution of the γ-Al2O3–clay composite membrane is found to be in the range of 5.4–13.6 nm. Separation performance of the membrane in terms of flux and rejection of single salts solution such as MgCl2 and AlCl3 as a function of pH, salt concentration and applied pressure is also studied. The rejection and flux behavior are found to be strongly dependent on electrostatic interaction between the charged molecules and γ-Al2O3–clay composite membrane. The intrinsic rejection has been determined by calculating the concentration at membrane surface (Cm) using Speigler–Kedem model. It is found that the observed rejection shows anomalous trend with increase in applied pressure and the intrinsic rejection increases with increase in applied pressure, a trend typical of the separation of electrolyte through charged membranes. At acidic pH, both the salt solution shows higher rejection. With increase in the salt concentration, observed rejection of salt decreases due to the enhanced concentration polarization. The maximum rejection of MgCl2 and AlCl3 is found to be 72% and 88%, respectively for salt concentration of 3000 ppm.  相似文献   

5.
Protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolytes have attracted much attention because of many advantages, such as low activation energy and high energy efficiency. BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) electrolyte based PCMFCs with stable Ba0.5Sr0.5Zn0.2Fe0.8O3−δ (BSZF) perovskite cathode were investigated. Using thin membrane BZCY7 electrolyte (about 15 μm in thickness) synthesized by a modified Pechini method on NiO-BZCY7 anode support, PCMFCs were assembled and tested by selecting stable BSZF perovskite cathode. An open-circuit potential of 1.015 V, a maximum power density of 486 mW cm−2, and a low polarization resistance of the electrodes of 0.08 Ω cm2 was achieved at 700 °C. The results have indicated that BZCY7 proton-conducting electrolyte with BSZF cathode is a promising material system for the next generation solid oxide fuel cells.  相似文献   

6.
用酸中和法制备了活性γ-Al2O3, 并在其表面负载SO3得到固体酸催化剂SO3/γ-Al2O3, 用XRD, TG-DTA, FT-IR,NMR, NH3-TPD等对其进行了结构和酸性研究. 结果表明: 在SO3/γ-Al2O3的制备过程中形成少量的Al2(SO4)3, 同时SO3与γ-Al2O3表面上的羟基反应, 形成强的Brönsted酸位, 根据1H/27Al 双共振(TRAPDOR)MAS NMR与FT-IR实验结果提出了Brönsted酸结构模型. SO3/γ-Al2O3表面存在两种不同强度的酸中心, 其酸强度大于分子筛HZSM-5, 但弱于传统的固体超强酸 /γ-Al2O3.  相似文献   

7.
The bulk superconducting YCa2Cu3O7−δ compounds are prepared at an ordinary pressure of oxygen by conventional solid-state reaction method. The formation of sample is tested by means of XRD and is studied for their ac susceptibility below room temperature up to 77.5 K. The samples are found single-phase orthorhombic structure and found superconducting at 83.5 K. It is shown that the analysis is consistent with published data on YBa2Cu3O7−δ oxide superconductor.  相似文献   

8.
Ag(core)–AgCl(shell) microcrystal composites (Ag@AgCl) have been formed on an α-Fe2O3 film-coated SnO2 electrode by a 2 step method consisting of the electrochemical reduction of Ag+ ions and the subsequent electrochemical oxidation. The synergy of α-Fe2O3 and Ag@AgCl gave rise to a high visible light-induced reactivity (λex > 420 nm) for the oxidation of 2-naphthol (2-NAP) used as a model water pollutant in the presence and absence of oxygen. These findings were attributable to the function of Ag@AgCl composites as an excellent charge-separation promoter and built-in acceptor.  相似文献   

9.
以Fe(NO3)3·9H2O和正硅酸乙酯(TEOS)为原料, 通过溶胶-凝胶法和辅助模板法分别制备了纳米α-Fe2O3和SiO2, 并对所合成样品进行了粉末X射线衍射(XRD)和BET表征. 使用自动电位滴定仪测定了α-Fe2O3/SiO2纳米颗粒混合体系的表面酸碱性质. 研究了在不同pH下α-Fe2O3/SiO2混合体系对Cu2+、Pb2+、Zn2+离子的吸附行为. 基于上述实验数据, 用WinSGW软件计算了α-Fe2O3/SiO2混合体系表面酸碱配位常数, 并得出结论: α-Fe2O3/SiO2混合体系表面反应为单一脱质子反应≡XOH ⇔ ≡XO-+ H+(lg K = -8.19±0.15), 明显区别于同时具有加质子和脱质子反应的α-Fe2O3/SiO2/γ-Al2O3, α-Fe2O3/γ-Al2O3和SiO2/γ-Al2O3等纳米颗粒混合体系. 在此基础上拟合得到α-Fe2O3/SiO2混合体系吸附重金属离子Cu2+、Pb2+、Zn2+的表面络合反应平衡常数分别为:
≡XOH + M2+ ⇔ ≡XOM++ H+ [lg K = -3.1, -3.6, -3.8 (M = Cu, Pb, Zn)].
≡XOH+M2++H2O ⇔≡XOMOH+2H+[lg K = -8.8, -8.0, -10.5 (M = Cu, Pb, Zn)]  相似文献   

10.
n-Type (Bi2Te3)0.9–(Bi2−xCuxSe3)0.1 (x=0–0.2) alloys with Cu substitution for Bi were prepared by spark plasma-sintering technique and their structural and thermoelectric properties were evaluated. Rietveld analysis reveals that approximate 9.0% of Bi atomic sites are occupied by Cu atoms and less than 4.0 wt% second phase Cu2.86Te2 precipitated in the Cu-doped parent alloys. Measurements show that an introduction of a small amount of Cu (x0.1) can reduce the lattice thermal conductivity (κL), and improve the electrical conductivity and Seebeck coefficient. An optimal dimensionless figure of merit (ZT) value of 0.98 is obtained for x=0.1 at 417 K, which is obviously higher than those of Cu-free Bi2Se0.3Te2.7 (ZT=0.66) and Ag-doped alloys (ZT=0.86) prepared by the same technologies.  相似文献   

11.
In this work we report about a new rare-earth oxoborate β-Dy2B4O9 synthesized under high-pressure/high-temperature conditions from Dy2O3 and boron oxide B2O3 in a B2O3/Na2O2 flux with a walker-type multianvil apparatus at 8 GPa and 1000°C. Single crystal X-ray structure determination of β-Dy2B4O9 revealed: , a=616.2(1) pm, b=642.8(1) pm, c=748.5(1) pm, α=102.54(1)°, β=97.08(1)°, γ=102.45(1)°, Z=2, R1=0.0151, wR2=0.0475 (all data). The compound exhibits a new structure type which is built up from bands of linked BO3- (Δ) and tetrahedral BO4-groups (□). The Dy3+-cations are positioned in the voids between the bands. According to the conception of fundamental building blocks β-Dy2B4O9 can be classified with the notation 2Δ6□:Δ3□=4□=3□Δ. Furthermore we report about temperature-resolved in situ powder diffraction measurements and IR-spectroscopic investigations on β-Dy2B4O9.  相似文献   

12.
Reducibility of Cu supported on Al2O3, zeolite Y and silicoaluminophosphate SAPO-5 has been investigated in dependence on the Cu content using a method combining conventional temperature programmed reduction (TPR) by hydrogen with reoxidation in N2O followed by a second the so-called surface-TPR (s-TPR). The method enables discrimination and a quantitative estimation of the Cu oxidation states +2, +1 and 0. The quantitative results show that the initial oxidation state of Cu after calcination in air at 400 °C, independent on the nature of the support, is predominantly +2. Cu2+ supported on Al2O3 is quantitatively reduced by hydrogen to metallic Cu0. Comparing the TPR of the samples calcined in air and that of samples additionally pre-treated in argon reveals that in zeolite Y and SAPO-5 Cu2+ cations are stabilized as weakly and strongly forms. In both systems, strongly stabilized Cu2+ ions are not auto-reduced by pre-treatment in argon at 650 °C, but are reduced in hydrogen to form Cu+. The weakly stabilized Cu2+ ions, in contrast, may be auto-reduced by pre-treatment in argon at 650 °C forming Cu+ but are reduced in hydrogen to metallic Cu0.  相似文献   

13.
A novel BaCe0.4Zr0.3 Sn0.1Y0.2O3−δ (BSY) electrolyte membrane with thickness of 20 μm was fabricated on NiO-based anode substrate via a one-step all-solid-state method followed by a co-sintering at 1450 °C for 5 h. Chemical stability test demonstrated that BSY electrolyte showed adequate chemical stability against CO2 and H2O at intermediate temperature. Besides, the doping of Sn also enhanced the conductivity in humidified hydrogen. With Nd0.7Sr0.3MnO3−σ cathode and hydrogen fuel, the fuel cell generated maximum output of 320, 185 and 105 mW cm−2 at 700, 650 and 600 °C, respectively. The interfacial resistance of the fuel cell was studied under open circuit conditions and the short-term cell performance also confirmed the stability of BSY electrolyte membrane.  相似文献   

14.
Fluorescein (HFin) emitted strong and stable room temperature phosphorescence (RTP) on filter paper after set at 50 °C for 10 min using Li+ as the ion perturber. HFin existed as Fin when the pH value was in the range of 5.45–7.36. Fin could react with [Cu(BPY)2]2+ (BPY: α,α-bipyridyl) to produce ion association complex [Cu(BPY)2]2+·[(Fin)2]2−, which could enhance the RTP signal of Hfin. In the presence of bovine serum albumin (BSA), the –COOH group of Fin in the [Cu(BPY)2]2+·[(Fin)2]2− could react with the –NH2 group of BSA to form the ion association complex [Cu(BPY)2]2+·[(Fin-BSA)2]2−, which contained –CO–NH– bond. This complex could sharply enhance the RTP signal of Hfin and the ΔIp was directly proportional to the content of BSA. According to the facts above, a new solid substrate-room temperature phosphorimetry (SS-RTP) for the determination of trace protein had been established using the ion association complex [Cu(BPY)2]2+·[(Fin)2]2−as a phosphorescent probe. This method had wide linear range (0.40 × 10−9–280 × 10−9 mg l−1), high sensitivity (the detection limit (LD) was 1.4 × 10−10 mg l−1), good precision (RSD: 3.4–4.9%) and high selectivity (the allowed concentration of coexistent ions or coexistent materials was high). It had been applied to the determination of the content of protein in 10 kinds of real samples, and the result agreed well with pyrocatechol violet-Mo (VI) method (P.V.M.M.), which indicated it had high accuracy. Meanwhile, reaction mechanism for the determination of trace protein with [Cu(BPY)2]2+·[(Fin)2]2− phosphorescent probe was also discussed. The academic thought of this research could not only be used to develop many kinds of ion association complex phosphorescent probes, but also provided a new way to promote the sensitivity of SS-RTP.  相似文献   

15.
Two new compounds of the AxMOXO4 family, β-LiVOAsO4 and β-VOAsO4, have been synthesized by solid state reaction and electrochemical lithium deintercalation from β-LiVOAsO4, respectively. Both compounds are isostructural and are built like other β-VOXO4 (X=S, P) by (VO5) chains of distorted VO6 octahedra connected via corner-shared AsO4 tetrahedra. For β-LiVOAsO4 the additional Li+ ions occupy chains of edge-shared octahedra running perpendicularly to the (VO5) chains. The one-dimensional antiferromagnetic behavior suggested by the structure has been experimentaly confirmed. It is shown that lithium deintercalation occurs through a first-order transition at 4.02 V vs Li+/Li0. From chemical bond considerations it is shown why the redox potential of a given transition element M in a six-fold coordination involving (M=O)m+ units lies between those observed in oxides and in M2(XO4)3 compounds with (XO4)n oxo anions (X=S, P, As).  相似文献   

16.
La1−x(PO3)3:Tbx3+ (0<x0.6) were prepared using solid-state reaction. The vacuum ultraviolet (VUV) excitation spectrum of La0.55(PO3)3:Tb0.453+ indicates that the absorption of (PO3)33− groups locates at about 163 and 174 nm and the absorption bands of (PO3)33− groups (174 nm) and La3+–O2− (200 nm) and Tb3+ (213 nm) overlap each other. These results imply that the (PO3)33− groups can efficiently absorb the excited energy around 172 nm and transfer the energy to Tb3+. Under 172 nm excitation, the optimal photoluminescence (PL) intensity is obtained when Tb concentration reaches 0.45 and is about 71% of commercial phosphor Zn1.96SiO4:0.04 Mn2+ with chromaticity coordinates of (0.343, 0.578) and the decay time of about 4.47 ms.  相似文献   

17.
Variation of the phases of Nd2NiO4+δ with the excess oxygen concentration δ has been examined at room temperature in the range 0.067≤δ≤0.224 using the X-ray powder diffraction technique. The phases observed at room temperature are orthorhombic-I (0.21<δ≤0.224), orthorhombic-IV (0.175<δ≤0.21), orthorhombic-II (0.15<δ≤0.175), orthorhombic-II+quasi-tetragonal-I (0.10<δ≤0.15), and quasi-tetragonal-I (0.067<δ≤0.10).  相似文献   

18.
Among the perovskites, the rare earth manganites find application in several electrochemical devices because of their enhanced thermodynamic stability. In this paper, we present the results obtained on the preparation and characterization of La0.95MnO3+δ and Sm0.95MnO3+δ which were prepared by the solid state and sol–gel methods. XRD characterization of the manganites indicated that the crystal structure depends on the method of preparation and heat treatments. The ratio of Mn3+ to Mn4+ in these samples also depended on the method of preparation and heat treatments, as indicated by thermogravimetric (TG) and temperature programmed reduction (TPR) studies in Ar + 5% H2 atmosphere. The standard molar enthalpy of formation, which is a measure of the thermodynamic stability of these compounds were determined using an isoperibol calorimeter.  相似文献   

19.
Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (SBET = 337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400–900 °C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6–17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500–600 °C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only α-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12–0.15 g/cm3 and SBET = 265–310 m2/g.  相似文献   

20.
High-temperature proton conductors have wide applications in the areas of fuel cells, electrolysis and hydrogen separation. Barium zirconate-based materials are of interest due to their good stability and high protonic conductivity. The reported conductivity of these ceramic materials is generally less than 10−2 S/cm, even at high temperatures. This is not high enough for an electrolyte-supported device to achieve an ASR of less than 0.2 Ω cm2 therefore thin film electrolytes are required for successful application. As BaZrO3-based materials have to be sintered at temperatures as high as 1700 °C, this makes it difficult to find a suitable supporting electrode which will not undergo significant chemical reaction with the BaZrO3-based electrolyte during fabrication of the required electrode supported electrolyte. In this paper, proton-conducting BaZr0.8Y0.2O2.9 was successfully sintered at 1325 °C with a relative density of 96% via addition of 1 wt% ZnO. Fabrication of electrochemical cells using proton-conducting BaZr0.8Y0.2O2.9 as the electrolyte thus becomes possible. The formula of the 1 wt% ZnO added sample is Ba0.97Zr0.77Y0.19Zn0.04O3−δ which exhibits a tetragonal structure with space group P4/mbm (127); a=5.9787(1) Å, c=4.2345(1) Å, V=151.36(1) Å3. It was found that a solid solution was formed for a limited range of Zn doping. Conductivity has been studied as a function of atmosphere (air, dry and wet 5% H2/Ar) with the changes in bulk and grain boundary on changing atmosphere being monitored as a function of time. The total conductivity of Ba0.97Zr0.77Y0.19Zn0.04O3–δ is 1.0×10−3 S/cm above 600 °C therefore it may be used as a proton-conducting thin film electrolyte for efficient electrochemical devices at such temperatures. The grain boundary resistance is insignificant at high temperature for the well-sintered sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号