首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
Let G be an infinite pro-p-group of finite coclass and let M(G) be its Schur multiplicator. For p > 2, we determine the isomorphism type of Hom(M(G), ℤp), where ℤp denotes the p-adic integers, and show that M(G) is infinite. For p = 2, we investigate the Schur multiplicators of the infinite pro-2-groups of small coclass and show that M(G) can be infinite, finite or even trivial.  相似文献   

2.
The aim of this note is to give a cohomological characterization of the real free pro-2-groups. Thereal free pro-2-groups are the free pro-2-product of copies of ℤ/2ℤ with a free pro-2-group. They are characterized as the pro-2-groupsG for which there exists a character χ0, whose kernel is a free pro-2-group, such that χ0∪χ=χ∪χ, for every χ∈H 1(G). We discuss the naturalness of these conditions and we state some relations between them and field arithmetic properties. Supported by a grant from CNPq-Brasil. This article was processed by the author using the LATEX style filecljour1 from Springer-Verlag.  相似文献   

3.
Let G be a finite p-group. If p = 2, then a nonabelian group G = Ω1(G) is generated by dihedral subgroups of order 8. If p > 2 and a nonabelian group G = Ω1(G) has no subgroup isomorphic to Sp2{\Sigma _{{p^2}}}, a Sylow p-subgroup of the symmetric group of degree p 2, then it is generated by nonabelian subgroups of order p 3 and exponent p. If p > 2 and the irregular p-group G has < p nonabelian subgroups of order p p and exponent p, then G is of maximal class and order p p+1. We also study in some detail the p-groups, containing exactly p nonabelian subgroups of order p p and exponent p. In conclusion, we prove three new counting theorems on the number of subgroups of maximal class of certain type in a p-group. In particular, we prove that if p > 2, and G is a p-group of order > p p+1, then the number of subgroups ≅ ΣSp2{\Sigma _{{p^2}}} in G is a multiple of p.  相似文献   

4.
Let G be a non-abelian finite p-group such that |Z 2(G)| = p 2. In this paper we prove that each maximal subgroup MC G (Z 2(G)) is non-abelian and has cyclic centre.  相似文献   

5.
If G is a finite group with subgroup H, then the Chermak–Delgado measure of H (in G) is defined as |H||C G (H)|. The Chermak–Delgado lattice of G, denoted 𝒞𝒟(G), is the set of all subgroups with maximal Chermak–Delgado measure; this set is a moduar sublattice within the subgroup lattice of G. In this paper we provide an example of a p-group P, for any prime p, where 𝒞𝒟(P) is lattice isomorphic to 2 copies of ?2 (a quasiantichain of width 2) that are adjoined maximum-to-minimum. We introduce terminology to describe this structure, called a 2-string of 2-diamonds, and we also give two constructions for generalizing the example. The first generalization results in a p-group with Chermak–Delgado lattice that, for any positive integers n and l, is a 2l-string of n-dimensional cubes adjoined maximum-to-minimum and the second generalization gives a construction for a p-group with Chermak–Delgado lattice that is a 2l-string of ? p+1 (quasiantichains, each of width p + 1) adjoined maximum-to-minimum.  相似文献   

6.
We give a sufficient condition on a finite p-group G of nilpotency class 2 so that Aut c (G) = Inn(G), where Aut c (G) and Inn(G) denote the group of all class preserving automorphisms and inner automorphisms of G respectively. Next we prove that if G and H are two isoclinic finite groups (in the sense of P. Hall), then Aut c (G) ≃ Aut c (H). Finally we study class preserving automorphisms of groups of order p 5, p an odd prime and prove that Aut c (G) = Inn(G) for all the groups G of order p 5 except two isoclinism families.  相似文献   

7.
We prove that a 2-group has exactly five rational irreducible characters if and only if it is dihedral, semidihedral or generalized quaternion. For an arbitrary prime p, we say that an irreducible character χ of a p-group G is “almost rational” if ℚ(χ) is contained in the cyclotomic field ℚ p , and we write ar(G) to denote the number of almost-rational irreducible characters of G. For noncyclic p-groups, the two smallest possible values for ar(G) are p 2 and p 2 + p − 1, and we study p-groups G for which ar(G) is one of these two numbers. If ar(G) = p 2 + p − 1, we say that G is “exceptional”. We show that for exceptional groups, |G: G′| = p 2, and so the assertion about 2-groups with which we began follows from this. We show also that for each prime p, there are exceptional p-groups of arbitrarily large order, and for p ≥ 5, there is a pro-p-group with the property that all of its finite homomorphic images of order at least p 3 are exceptional.  相似文献   

8.
Let G be a powerful finite p-group. In this note, we give a short elementary proof of the following facts for all i ≥ 0: (i) exp Ωi(G) ≤ p i for odd p, and expΩi(G) ≤ 2 i+1 for p = 2; (ii) the index |G: G p i| coincides with the number of elements of G of order at most p i. Supported by the Spanish Ministry of Science and Education, grant MTM2004-04665, partly with FEDER funds, and by the University of the Basque Country, grant UPV05/99.  相似文献   

9.
10.
Let G be a non-abelian group and Z(G) be the center of G. Associate a graph Γ G (called noncommuting graph of G) with G as follows: Take G?Z(G) as the vertices of Γ G , and join two distinct vertices x and y, whenever xy ≠ yx. Here, we prove that “the commutativity pattern of a finite non-abelian p-group determine its order among the class of groups"; this means that if P is a finite non-abelian p-group such that Γ P  ? Γ H for some group H, then |P| = |H|.  相似文献   

11.
In 1955 R. Brauer and K. A. Fowler showed that ifG is a group of even order >2, and the order |Z(G)| of the center ofG is odd, then there exists a strongly real) elementx∈G−Z whose centralizer satisfies|C G(x)|>|G|1/3. In Theorem 1 we show that every non-abeliansolvable groupG contains an elementx∈G−Z such that|C G(x)|>[G:G′∩Z]1/2 (and thus|C G(x)|>|G|1/3). We also note that if non-abelianG is either metabelian, nilpotent or (more generally) supersolvable, or anA-group, or any Frobenius group, then|C G(x)|>|G|1/2 for somex∈G−Z. In Theorem 2 we prove that every non-abelian groupG of orderp mqn (p, q primes) contains a proper centralizer of order >|G|1/2. Finally, in Theorem 3 we show that theaverage |C(x)|, x∈G, is ≧c|G| 1/3 for metabelian groups, wherec is constant and the exponent 1/3 is best possible.  相似文献   

12.
Let R be a ring, which is either a ring of integers or a field of zero characteristic. For every finite graph Γ, we construct an R-arithmetic linear group H(Γ). The group H(Γ) is realized as the factor automorphism group of a partially commutative class two nilpotent R-group G Γ. Also we describe the structure of the entire automorphism group of a partially commutative nilpotent R-group of class two.  相似文献   

13.
《代数通讯》2013,41(8):3227-3245
Abstract

We determine the number of elements of order two in the group of normalized units V(𝔽2 G) of the group algebra 𝔽2 G of a 2-group of maximal class over the field 𝔽2 of two elements. As a consequence for the 2-groups G and H of maximal class we have that V(𝔽2 G) and V(𝔽2 H) are isomorphic if and only if G and H are isomorphic.  相似文献   

14.
ItH i is a finite non-abelianp-group with center of orderp, for 1≦jR, then the direct product of theH i does not occur as a normal subgroup contained in the Frattini subgroup of any finitep-group. If the Frattini subgroup Φ of a finitep-groupG is cyclic or elementary abelian of orderp 2, then the centralizer of Φ inG properly contains Φ. Non-embeddability properties of products of groups of order 16 are established.  相似文献   

15.
Let G =(V, E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f* : E → Z2 defined by f*(xy) = f(x) +f(y) for each xy ∈ E. For i ∈ Z2, let vf(i) = |f^-1(i)| and ef(i) = |f*^-1(i)|. A labeling f is called friendly if |vf(1) - vf(0)| ≤ 1. For a friendly labeling f of a graph G, we define the friendly index of G under f by if(G) = e(1) - el(0). The set [if(G) | f is a friendly labeling of G} is called the full friendly index set of G, denoted by FFI(G). In this paper, we will determine the full friendly index set of every Cartesian product of two cycles.  相似文献   

16.
LetG be a finite group of even order, having a central element of order 2 which we denote by −1. IfG is a 2-group, letG be a maximal subgroup ofG containing −1, otherwise letG be a 2-Sylow subgroup ofG. LetH=G/{±1} andH=G/{±1}. Suppose there exists a regular extensionL 1 of ℚ(T) with Galois groupG. LetL be the subfield ofL 1 fixed byH. We make the hypothesis thatL 1 admits a quadratic extensionL 2 which is Galois overL of Galois groupG. IfG is not a 2-group we show thatL 1 then admits a quadratic extension which is Galois over ℚ(T) of Galois groupG and which can be given explicitly in terms ofL 2. IfG is a 2-group, we show that there exists an element α ε ℚ(T) such thatL 1 admits a quadratic extension which is Galois over ℚ(T) of Galois groupG if and only if the cyclic algebra (L/ℚ(T).a) splits. As an application of these results we explicitly construct several 2-groups as Galois groups of regular extensions of ℚ(T).  相似文献   

17.
We find necessary and sufficient conditions for the factor groups of the derived series of a pro-p-group with a single defining relation to be torsion free. For such groupsG we prove that the group algebra ℤ pG is a domain and the cohomological dimension ofG is at most 2.  相似文献   

18.
OD-characterization of Almost Simple Groups Related to U3(5)   总被引:1,自引:0,他引:1  
Let G be a finite group with order |G|=p1^α1p2^α2……pk^αk, where p1 〈 p2 〈……〈 Pk are prime numbers. One of the well-known simple graphs associated with G is the prime graph (or Gruenberg- Kegel graph) denoted .by г(G) (or GK(G)). This graph is constructed as follows: The vertex set of it is π(G) = {p1,p2,…,pk} and two vertices pi, pj with i≠j are adjacent by an edge (and we write pi - pj) if and only if G contains an element of order pipj. The degree deg(pi) of a vertex pj ∈π(G) is the number of edges incident on pi. We define D(G) := (deg(p1), deg(p2),..., deg(pk)), which is called the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non- isomorphic groups H such that |H| = |G| and D(H) = D(G). Moreover, a 1-fold OD-characterizable group is simply called OD-characterizable. Let L := U3(5) be the projective special unitary group. In this paper, we classify groups with the same order and degree pattern as an almost simple group related to L. In fact, we obtain that L and L.2 are OD-characterizable; L.3 is 3-fold OD-characterizable; L.S3 is 6-fold OD-characterizable.  相似文献   

19.
Let G be a finite group with derived subgroup of rank r. We prove that |G: Z 2(G)| ≤ |G′|2r . Motivated by the results of I. M. Isaacs in [5] we show that if G is capable then |G: Z(G)| ≤ |G′|4r . This answers a question of L. Pyber. We prove that if G is a capable p-group then the rank of G/Z(G) is bounded above in terms of the rank of G′.  相似文献   

20.
In [1], we defined c(G), q(G) and p(G). In this paper we will show that if G is a p-group, where p is an odd prime and |G| ≤ p 4, then c(G) = q(G) = p(G). However, the question of whether or not there is a p-group G with strict inequality c(G) = q(G) < p(G) is still open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号