首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microscopic structures of Zn(II) surface complexes adsorbed at the manganite (gamma-MnOOH)-water interface were studied using extended X-ray absorption fine structure (EXAFS) spectroscopy. Quantitative analysis of the first sphere showed that, in a 0.1 M NaNO(3) solution of pH 7.5, Zn(II) was adsorbed as a mixture of tetrahedral and octahedral structure (ZnO(4,6) polyhedra) and the average Zn-O distance was 2.00+/-0.01 A. EXAFS analysis of the second sphere showed that two typical atomic Zn-Mn distances of 3.07+/-0.01 and 3.52+/-0.02 A existed in the surface complexes, indicating that there were two types of linkage, i.e., the edge-linkage of high affinity and the corner-linkage of low affinity, between the ZnO(4,6) polyhedra and the MnO(6) octahedra of the manganite. Macroscopic adsorption-desorption experiments showed that adsorption of Zn(II) onto manganite was largely irreversible and the stronger edge-linkage mode was found to be responsible for the adsorption irreversibility. This result provided direct evidence from the molecular level for the basic hypothesis of the metastable-equilibrium adsorption (MEA) theory that adsorption density is not a thermodynamic state variable because a given value of adsorption density could have different values of chemical potential, depending on the proportion between the edge and corner linkage modes.  相似文献   

2.
The co-adsorption of Cd(II) and glyphosate (N-(phosphonomethyl)glycine, PMG) at the manganite (gamma-MnOOH) surface has been studied in the pH range 6-10 at 25 degrees C and with 0.1 M Na(Cl) as ionic medium. Batch adsorption experiments, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy were used for the quantitative analysis and the determination of the molecular structure of the surface complexes. The adsorption of Cd(II) and PMG in the ternary Cd(II)-PMG-manganite system was compared with the adsorption in the binary Cd(II)-manganite and PMG-manganite systems. The formation of three inner sphere surface complexes was observed, a ternary Cd(II)-PMG-manganite complex, a binary Cd(II)-manganite complex and a binary PMG-manganite complex. The surface concentration of the ternary complex and the Cd(II)-manganite complex was more or less constant throughout the pH range studied. However, the surface concentration of the binary PMG-manganite complex decreased with increasing pH. The major part of the binary PMG-surface complex was protonated. The ternary surface complex displayed a type B structure (Cd(II)-PMG-manganite). The average Cd-Mn distance obtained from EXAFS (3.26 A) indicates that the binary and ternary Cd(II)-surface complexes are formed by edge-sharing of Mn and Cd octahedra on the (010) plane of the manganite crystals.  相似文献   

3.
EXAFS研究不同酸度下Zn2+在水锰矿表面的吸附和沉淀   总被引:2,自引:0,他引:2  
用EXAFS(extended X-ray absorption fine structure)研究了pH 7.00、7.50、8.00时Zn(II)在水锰矿表面的吸附和沉淀. Zn第一层配位Zn—O距离约为0.202 nm, 不随pH变化, 表明Zn的构型为四面体和八面体的混合物. 在pH 7.00 条件下, Zn—Mn距离约为0.300 nm, Zn主要以双边形式吸附在水锰矿(010)或(110)面. pH 7.50和pH 8.00时, 大部分的Zn在表面形成了结构类似于沉淀样品的多核羟基络合物, 其中0.311 nm Zn—Zn距离对应两个Zn八面体连接, 而0.353 nm Zn—Zn距离对应Zn八面体和Zn四面体连接.  相似文献   

4.
Microscopic structures of Zn(II) adsorbed at delta-MnO(2)-water interfaces were studied using extended X-ray absorption fine structure (EXAFS) spectroscopy. In a 0.1 M NaNO(3) solution of pH 5.50, hydrous Zn(II) was adsorbed onto the solid surface in the form of octahedral coordination. Adsorbed octahedral Zn(II) was located above and below the vacancy sites of delta-MnO(2). Each Zn was coordinated on one side to H(2)O molecules forming an H(2)O sheet and on the other side to oxygen atoms shared with layer MnO(6) octahedra forming a corner-sharing octahedral interlayer complex. The average Zn-O and Zn-Mn distances were 2.07+/-0.01 and 3.52+/-0.01 A, respectively. Macroscopic adsorption-desorption isotherms showed that, in contrast to that of the Zn-gamma-MnOOH system, adsorption of Zn(II) on delta-MnO(2) was highly reversible. EXAFS results indicated that the highly reversible adsorption was due to the weak adsorption mode of the corner-sharing linkage between the adsorbate and adsorbent polyhedra.  相似文献   

5.
Zn(II) sorption onto Al and Si oxides was studied as a function of pH (5.1-7.52), sorption density, and ionic strength. This study was carried out to determine the role of the various reaction conditions and sorbent phases in Zn complexation at oxide surfaces. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to probe the Zn atomic environment at the metal oxide/aqueous interface. For both amorphous silica and high-surface-area gibbsite, Zn sorption kinetics were rapid and reached completion within 24 h. In contrast, Zn sorption on low-surface-area-gibbsite was much slower, taking nearly 800 h for a sorption plateau to be reached. In the case of silica, EXAFS revealed that Zn was in octahedral coordination with first-shell oxygen atoms up to a surface loading of approximately 1 micro molm(-2), changing to tetrahedral coordination as surface loading and pH increased. For the high-surface-area gibbsite system, the Znz.sbnd;O first-shell distance was intermediate between values for tetrahedral and octahedral coordination over all loading levels. Zn formed inner-sphere adsorption complexes on both silica and high-surface-area gibbsite over all reaction conditions. For Zn sorption on low-surface-area gibbsite, formation of Znz.sbnd;Al layered double hydroxide (LDH) occurred and was the cause for the observed slow Zn sorption kinetics. The highest pH sample (7.51) in the Zn-amorphous silica system resulted in the formation of an amorphous Zn(OH)(2) precipitate with tetrahedral coordination between Zn and O. Aging the reaction samples did not alter the Zn complex in any of the systems. The results of this study indicate the variability of Zn complexation at surfaces prevalent in soil and aquatic systems and the importance of combining macroscopic observations with methods capable of determining metal complex formation mechanisms.  相似文献   

6.
应用延展X射线吸收精细结构(EXAFS)方法, 研究了不同pH对Zn(Ⅱ)在锐钛矿型TiO2表面吸附产物的微观构型的影响. 宏观的吸附-解吸实验表明, 随着pH值由5.8增大至6.8, 吸附等温线明显升高, Freundlich吸附常数由1.345 L/g增加到15.385 L/g; 而体系的不可逆性逐渐降低, 不可逆吸附系数(TⅡ)由0.43降低到0.23. 不同pH条件下吸附样品的EXAFS结果表明, Zn(Ⅱ)主要通过共用水合离子及TiO2表面的O原子结合到TiO2表面上, 第一配位层(Zn—O层)原子间距和配位数随着pH值增大逐渐降低, Zn(Ⅱ)在TiO2表面吸附形态从六配位向四配位转化;第二配位层(Zn—Ti层)分析结果表明, 存在2个典型的Zn—Ti原子间距, 即R1=0.319~0.334 nm(双齿方式结合的强吸附)和R2=0.366~0.378 nm(单齿方式结合的弱吸附), 随着pH值的升高, 强吸附位(CN1)逐渐减少而弱吸附位(CN2)逐渐增加, 其比值由2.12降低至0.89, 从而导致其在高pH值的条件下吸附量和可逆性明显增大. EXAFS结果从分子水平说明了该体系在不同pH值条件下表现出的可逆性差异是由于微观吸附状态不同所致.  相似文献   

7.
The adsorption of Ga(III) at the water-alpha-FeOOH (goethite) interface has been investigated by means of quantitative adsorption experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy, and surface complexation modeling. Under the conditions studied, pH range 3-11 and surface coverages of 0.9-3.2 micromol/m2, Ga(III) was found to adsorb strongly to alpha-FeOOH, and the surface species were more resistant toward hydrolysis and formation of soluble Ga(OH)4- than either solid gallium hydroxides or soluble polynuclear complexes. The EXAFS measurements revealed the presence of octahedral Ga(III) complexes at the water-alpha-FeOOH interface, with practically no structural variations as a function of pH or total gallium concentration. Analysis of the first coordination shell required an anharmonic model indicating a distorted geometry of the GaO6 octahedra, with mean Ga-O distances at 1.96-1.98 angstroms. A method based on the continuous Cauchy wavelet transforms (CCWT) was used to identify backscattering atoms in the higher coordination shells. This analysis indicated predominately Fe backscattering, and the quantitative data fitting resulted in three Ga-Fe paths at 3.05, 3.2, and 3.55 angstroms, which correspond to two edge-sharing and one corner-sharing linkage, respectively. The collective results from EXAFS spectroscopy showed that Ga(III) adsorbs to Fe equivalent sites at the surface alpha-FeOOH as an extension of the rows of Fe octahedra in the bulk structure. This interpretation was further corroborated by a Ga-Fe-Fe multiple scattering path at 6.13 angstroms. The quantitative adsorption and proton data were modeled using a surface complexation formalism based on a 1 pK(a) constant capacitance model. In agreement with the EXAFS results, the model obtained included one predominating surface complex with the stoichiometry [triple bond]FeOGa(OH)2(-0.5) and the stability constant log beta(intr.) = -2.55 +/- 0.04 ([triple bond]FeOH(-0.5) + Ga3+ + 2H2O <--> [triple bond]FeOGa(OH)2(-0.5) + 3H+).  相似文献   

8.
The sorption speciation of Ni(II) on Ca-montmorillonite was evaluated using a combination of batch experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy and modeling. The pH and temperature at the aqueous-montmorillonite interface affects both the extent of Ni(II) sorption as well as the local atomic structure of the adsorbed Ni(II) ions. At 0.001 mol L(-1) Ca(NO(3))(2) and low pH, the study reveals that the majority of Ni(II) is adsorbed in the interlayers of Ca-montmorillonite coordinated by six water molecules in an octahedron as an outer-sphere complex. At higher pH, inner-sphere surface complexes are formed. The Ni-Si/Al distances (R(Ni-Al) = 3.00 ?, R(Ni-Si1) = 3.10 ? and R(Ni-Si2) = 3.26 ?) determined by EXAFS confirm the formation of mononuclear complexes located at the edges of Ca-montmorillonite platelets at pH 7.5 and 8.5. At pH 10.0, the Ni-Ni/Si distances (R(Ni-Ni) = 3.07 ? and R(Ni-Si) = 3.26 ?) indicates the formation of Ni-phyllosilicate precipitates. A rise in temperature promotes inner-sphere complexation, which in turn leads to an increase in Ni(II) sorption on Ca-montmorillonite. Sorption edges are fitted excellently by surface complexation model (SCM) with the aid of surface species determined from EXAFS spectroscopy.  相似文献   

9.
The structure of iron and managanese ions substituted in the framework of nanoporous AlPO-5 is determined by ex situ and in situ X-ray absorption spectroscopy. Fe K-edge XANES and EXAFS studies clearly indicate that iron ions are present as Fe(III) in octahedral coordination in the assynthesised material and tetrahedral coordination in the calcined material in both pure FeAlPO-5 and FeMnalPO-5. XANES and EXAFS results also indicate that reaction with hydrogen peroxide causes the removal of Fe(III) ions from the framework. Mn K-edge XANES and EXAFS of FeMnAlPO-5 samples indicate that Mn(II) ions are present in the framework, tetrahedrally coordinated, in the as-synthesised material but upon calcination it is found that the Mn(II) ions are removed from the framework, suggesting a different synthesis strategy is necessary to stabilise the Mn(II) ions in the framework simultaneously with Fe(III) ions.  相似文献   

10.
Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies were used to probe the first-shell coordination structure of Mn(II) in aqueous MnBr2 solutions at ambient conditions from very dilute to the near saturation limit. The Mn K-edge EXAFS spectra for 0.05 and 0.2 m solutions showed that there was no Br(−I) in the first shell, and that the Mn(II) was fully hydrated with six water molecules in an octahedral arrangement. In contrast, for 6 m solution, the coordination number of water was reduced to about 5, and an average of about one bromine atom was present in the first shell as a contact ion pair. The 1s → 4p transition at 6545.5 eV confirmed the observation of Mn–Br contact ion pairs at high concentrations and the 1s → 3d transition at 6539.5 eV showed that the first shell coordination symmetry remained octahedral even in the presence of Mn–Br ion pairs.  相似文献   

11.
The effects of pH, ionic strength, competing ions and initial metal concentrations on the uptake behavior and mechanism of radioactive Ni(II) onto MnO2 was investigated using a combination of classical macroscopic methods and the extended X-ray absorption fine structure (EXAFS) spectroscopy technique. The results indicated that the uptake of Ni(II) on MnO2 is obviously dependent on pH but independent of ionic strength, which suggested that the uptake of Ni(II) onto MnO2 is attributed to an inner-sphere surface complex rather than an outer-sphere surface complex. EXAFS analysis shows that the hydrated Ni(II) is adsorbed through six-fold coordination with an average Ni–O interatomic distance of 2.04 ± 0.01 ?. It can be inferred from the EXAFS analysis that the inner-sphere surface complex of Ni(II) onto MnO2 is involved in both edge-sharing and corner-sharing linkages. Both the macroscopic uptake data and the molecular level evidence of Ni(II) surface speciation at the MnO2-water interfaces should be factored into better prediction of the bioavailability and mobility of Ni(II) in soil and water environment.  相似文献   

12.
A solid phase extraction method for the determination of Cu(II), Mn(II) and Zn(II) metal ions in natural water and leafy vegetable samples by ICP-AES was developed. The method was based on the sorption of metal ions onto Amberlite XAD-16 functionalized with a new chelating ligand potassium 2-benzoylhydrazinecarbodithioate (Amberlite XAD-16-PBHCD) and elution with nitric acid. The optimum experimental conditions for the quantitative sorption of the three metal ions, namely, effect of pH, sample volume, flow rate, concentration of eluent, sorption capacity, kinetics of sorption, and the effect of diverse ions on the sorption of analytes have been investigated. All the metal ions were quantitatively retained by the functionalized resin at pH 5.0 and sorbed metals could be eluted with 2.0?M HNO3. The detection limits were 5.6, 4.5 and 1.8?µg?L?1 for Cu(II), Mn(II) and Zn(II), respectively. The developed method was applied for the determination of Cu(II), Mn(II) and Zn(II) in water and leafy vegetable samples.  相似文献   

13.
Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies were used to probe the first-shell coordination structure about Mn(II) and Br(-1) ions that exist as contact ion pairs in supercritical water. This work was performed to clarify why solutions of MnBr2 in supercritical water are known to effectively catalyze the aerobic oxidative synthesis of terephthalic acid from p-xylene as well as a number of other methylaromatic compounds. The Mn and Br K-edge spectra were collected at the bending magnet beamline (sector 20) at the Advanced Photon Source, Argonne National Laboratory. The first-shell coordination structure about the Mn(II) ion changes from octahedral at ambient conditions to tetrahedral at supercritical conditions. Under supercritical conditions, the measured bond distances of Mn-OH2 and Mn-Br are 2.14 and 2.46 A, respectively. Direct contact ion pairs form with about 2 Br(-1) ions present in the first coordination shell of the Mn(II) ion. The structure of dissolved MnBr2, below 1.0 m, changes from essentially [Mn(II)(H2O)6]+2 to [Mn(II)(H2O)2(Br(-1))2] in supercritical water (scH2O). When an excess of Br(-1) ion is added, the bromide coordination number increases and the number of water molecules decreases. The results show that the initial MnBr2 catalyst in scH2O is tetrahedral with two Mn-Br contact ion pairs. The presence of the acetate anion deactivates the catalyst by formation of insoluble MnO.  相似文献   

14.
The coadsorption of Cu(II) and glyphosate (N-(phosphonomethyl)glycine, abbreviated to PMG) at the water-goethite interface was studied by means of batch adsorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The system was investigated over the pH range 3--9 and at total concentrations of 0.9 micromol and 2.2 micromol Cu(II) and PMG per m(2) of goethite. The collective quantitative and spectroscopic results show that Cu(II) and PMG directly interact at the water-goethite interface to form ternary surface complexes. Two predominating complexes have been identified. At pH 4 the IR and CuK-edge EXAFS data indicate a molecular structure where the phosphonate group of PMG bonds monodentately to the surface in an inner sphere mode, while carboxylate and amine groups coordinate to Cu(II) to form a 5-membered chelate ring. Hence, at pH 4, Cu(II) and PMG form a ternary surface complex on goethite with the general structure goethite-PMG-Cu(II). At the highest pH investigated (pH 9), the carboxylate group is still coordinated to Cu(II) but the phosphonate group is present in a relatively free, non-coordinated and/or disordered state. Although the spectroscopic data are not conclusive they indicate the formation of ternary surface complexes with the molecular architecture goethite-Cu(II)-PMG at high pH.  相似文献   

15.
The influence of humic acid (HA) on Ni(ii) sorption to Ca-montmorillonite was examined by using a combination of batch sorption experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy technique. The sorption of Ni(ii) on HA-montmorillonite hybrids is strongly dependent on pH and temperature. At low pH, the sorption of Ni(ii) is mainly dominated by Ni-HA-montmorillonite and outer-sphere surface complexation. The EXAFS results indicate that the first coordination shell of Ni(ii) consists of ~6 O atoms at the interatomic distances of ~2.04 ? in an octahedral structure. At high pH, binary Ni-montmorillonite surface complexation is the dominant sorption mechanism. EXAFS analysis indicates the formation of mononuclear complexes located at the edges of Ca-montmorillonite platelets at pH 7.5, while a Ni-Al layered double hydroxide (LDH) phase at the Ca-montmorillonite surface formed with pH 8.5. At pH 10.0, the dissolved HA-Ni(ii) complexation inhibits the precipitation of Ni hydroxide, and Ni-Al LDH phase forms. The rise of temperature increases the sorption capacity of Ni(ii), and promotes Ni-Al LDH phase formation and the growth of crystallites. The results are important to evaluate the physicochemical behavior of Ni(ii) in the natural environment.  相似文献   

16.
用延展X射线吸收精细结构光谱(EXAFS)研究了不同温度对Zn(II)-锐钛矿型TiO2吸附产物微观构型和吸附可逆性的影响机制. 宏观的吸附-解吸实验表明, 不同温度下的吸附等温线可以用Langmuir 模型进行较好的描述(R2≥0.990). 随温度升高, 吸附等温线显著升高, Zn(II)在TiO2表面的饱和吸附量由5 ℃时的0.125 mmol·g-1增至40 ℃时的0.446 mmol·g-1; 而体系的不可逆性明显减弱, 解吸滞后角θ由32.85°减至8.64°. 求得体系反应的热力学参数⊿H、⊿S分别为24.55 kJ·mol-1 和159.13 J·mol-1·K-1. EXAFS结果表明, Zn(II)主要是通过共用水合Zn(II)离子及TiO2表面上的O原子结合到TiO2表面上,其平均Zn-O原子间距为RZn-O=(0.199±0.001) nm. 第二配位层(Zn-Ti 层)的EXAFS图谱分析结果表明, 存在两个典型的Zn-Ti 原子间距, 即R1=(0.325±0.001) nm (边-边结合的强吸附)和R2=(0.369±0.001) nm(角-角结合的弱吸附). 随温度升高, 强吸附比例(CN1)基本不变而弱吸附比例(CN2)增加, 两者比值(CN1/CN2)逐渐减小. 该比值的变化从微观角度解释了宏观实验中温度升高, 不可逆性减弱的吸附现象.  相似文献   

17.
The most recent XRD studies of Photosystem II (PS II) reveal that the His337 residue is sufficiently close to the Mn(4)Ca core of the Water Oxidising Complex (WOC) to engage in H-bonding interactions with the μ(3)-oxo bridge connecting Mn(1), Mn(2) and Mn(3). Such interactions may account for the lengthening of the Mn-Mn distances observed in the most recent and highest resolution (1.9 ?) crystal structure of PS II compared to earlier, lower-resolution (2.9 ? or greater) XRD structures and EXAFS studies on functional PS II. Density functional theory is used to examine the influence on Mn-Mn distances of H-bonding interactions, mediated by the proximate His337 residue, which may lead to either partial or complete protonation of the μ(3)-oxo bridge on models of the WOC. Calculations were performed on a set of minimal-complexity models (in which WOC-ligating amino acid residues are represented as formate and imidazole ligands), and also on extended models in which a 13-peptide sequence (from His332 to Ala344) is treated explicitly. These calculations demonstrate that while the 2.9 ? structure is best described by models in which the μ(3)-oxo bridge is neither protonated nor involved in significant H-bonding, the 1.9 ? XRD structure is better reproduced by models in which the μ(3)-oxo bridge undergoes H-bonding interactions with the His337 residue leading to expansion of the 'close' Mn-Mn distances well known from EXAFS studies at ~ 2.7 ?. Furthermore, full μ(3)-oxo-bridge protonation remains a distinct possibility during the process of water oxidation, as evidenced by the lengthening of the Mn-Mn vectors observed in EXAFS studies of the higher oxidation states of PS II. In this context, the Mn-Mn distances calculated in the protonated μ(3)-oxo bridge structures, particularly for the peptide extended models, are in close agreement with the EXAFS data.  相似文献   

18.
Cu K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near-edge structure (MXAN) analyses were combined to evaluate the structure of the copper(II) imidazole complex ion in liquid aqueous solution. Both methods converged to the same square-pyramidal inner coordination sphere [Cu(Im)(4)L(ax)](2+) (L(ax) indeterminate) with four equatorial nitrogen atoms at EXAFS, 2.02 ± 0.01 ?, and MXAN, 1.99 ± 0.03 ?. A short-axial N/O scatterer (L(ax)) was found at 2.12 ± 0.02 ? (EXAFS) or 2.14 ± 0.06 ? (MXAN). A second but very weak axial Cu-N/O interaction was found at 2.9 ± 0.1 ? (EXAFS) or 3.0 ± 0.1 ? (MXAN). In the MXAN fits, only a square-pyramidal structural model successfully reproduced the doubled maximum of the rising K-edge X-ray absorption spectrum, specifically excluding an octahedral model. Both EXAFS and MXAN also found eight outlying oxygen scatterers at 4.2 ± 0.3 ? that contributed significant intensity over the entire spectral energy range. Two prominent rising K-edge shoulders at 8987.1 and 8990.5 eV were found to reflect multiple scattering from the 3.0 ? axial scatterer and the imidazole rings, respectively. In the MXAN fits, the imidazole rings took in-plane rotationally staggered positions about copper. The combined (EXAFS and MXAN) model for the unconstrained cupric imidazole complex ion in liquid aqueous solution is an axially elongated square-pyramidal core, with a weak nonbonded interaction at the second axial coordination position and a solvation shell of eight nearest-neighbor water molecules. This core square-pyramidal motif has persisted through [Cu(H(2)O)(5)](2+), [Cu(NH(3))(4)(NH(3),H(2)O)](2+), (1, 2) and now [Cu(Im)(4)L(ax))](2+) and appears to be the geometry preferred by unconstrained aqueous-phase copper(II) complex ions.  相似文献   

19.
Synthesis and characterisation of small ZnS particles   总被引:1,自引:0,他引:1  
Small ZnS particles, prepared at room temperature in an alcoholic medium using a zinc salt and thioacetamide as sulphur source, have been characterised using a suite of techniques which includes XRD, TEM and Zn K-edge EXAFS. The investigation suggests that aggregates of small sphalerite particles (cubic lattice), with average size of 3.5 nm and well-defined morphology are obtained and the particle size appears not to change with increase in the reaction time from 2 to 24 h. Zn K-edge EXAFS experiments were performed at 10 K, in order to reduce thermal disorder and the refinement of the EXAFS data resulted in very small second shell coordination numbers with respect to the bulk samples. The result is in good agreement with SEM and XRD data about the presence of nanosized particles, having a large number of surface atoms with low second shell coordination number.  相似文献   

20.
To determine the influence of humic acid (HA), pH, and presence of atmospheric CO2 on the sorption of U(VI) onto kaolinite, the structure of the surface complexes was studied by U L III-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The best fits to the experimental EXAFS data were obtained by including two uranium coordination shells with two axial (O ax) and five equatorial (O eq) oxygen atoms at 1.77+/-0.02 and 2.34+/-0.02 A, respectively, and two coordination shells with one Al/Si atom each at 3.1 and 3.3 A. As in the case of the binary system U(VI)-kaolinite, uranium forms inner-sphere surface complexes by edge sharing with aluminum octahedra and/or silicon tetrahedra. HA and atmospheric CO2 as well as pH had no influence on the EXAFS structural parameters in the pH range of 5-8. Despite the presence of HA, U(VI) prefers to sorb directly onto kaolinite and not to HA that is bound to the clay surface. X-ray photoelectron spectroscopy (XPS) measurements of kaolinite particles that had been exposed to HA suspensions showed that significant parts of the kaolinite surface are not covered by HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号