首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mixture of cyclic gold(I) complexes [Au(2)(μ-cis-dppen)(2)]X(2) (X = OTf 1, PF(6)3) and [Au(cis-dppen)(2)]X (X = OTf 2, PF(6)4) is obtained from the reaction of [Au(tht)(2)]X (tht = tetrahydrothiophene) with one equivalent of cis-dppen [dppen = 1,2-bis(diphenylphosphino)ethylene]. The analogous reaction with trans-dppen or dppa [dppa = bis(diphenylphosphino)acetylene] affords the cyclic trinuclear [Au(3)(μ-trans-dppen)(3)]X(3) (X = OTf 11, PF(6)12) and tetranuclear [Au(4)(μ-dppa)(4)]X(4) (X = OTf 13, PF(6)14, ClO(4)15) gold complexes, respectively. Recrystallization of 15 from CH(2)Cl(2)/MeOH yielded a crystal of the octanuclear gold cluster [Au(8)Cl(2)(μ-dppa)(4)](ClO(4))(2)16. Attempts to prepare dicationic binuclear gold(II) species from the reaction of a mixture of 3 and 4 with halogens gave a mixture of products, the components of which confirmed to be acyclic binuclear gold(I) [Au(2)X(2)(cis-dppen)] (X = I 5, Br 7) and cyclic mononuclear gold(III) [AuX(2)(cis-dppen)]PF(6) (X = I 6, Br 8) complexes. Complexes 11-14 reveal weak emission in butyronitrile glass at 77 K, but they are non-emissive at room temperature. Ab initio modelling was performed to determine the charge state of the gold atoms involved. Extensive structural comparisons were made to experimental data to benchmark these calculations and rationalize the conformations.  相似文献   

2.
Electrochemical investigations of [bis(triphenylphosphoranylidene)ammonium)][tris(2-(diphenylphosphino)thiaphenolato)ruthenate(II)], PPN[Ru(DPPBT)(3)] (1), and [(bis(2-(diphenylphosphino)thiaphenolato)methane)(2-(diphenylphosphino)thiaphenolato)ruthenium(II)] chloride, [Ru((DPPBT)(2)CH(2))(DPPBT)]Cl (2) are reported. Complex 1 is oxidized reversibly in a metal-centered event by one electron at a potential of +455 mV (vs Ag/AgCl) to the ruthenium(III) derivative [tris(2-(diphenylphosphino)thiaphenolato)ruthenium(III)], 3. Complex 3 can also be prepared by iodine oxidation of 1 in acetonitrile. Oxidation of 3 in acetonitrile is reversible on a cyclic voltammetry time scale but irreversible upon bulk oxidation yielding Ru-X. Monitoring the oxidation of 3 by UV-visible spectroscopy reveals a proposed metal-coordinated thiyl radical intermediate with a maximum absorbance at 850 nm. This intermediate decays at a temperature of -20 degrees C with a rate constant of (5.82 +/- 0.73) x 10(-)(3) s(-)(1) with a small, positive deltaH and a large, negative deltaS. Ru-X can be oxidized reversibly to Ru-Y at a potential of +806 mV but cannot be reduced. Complex 2 is reversibly oxidized by one electron in a metal-centered event to 4 at a potential of +767 mV.  相似文献   

3.
Pd(0)-mediated rapid couplings of CH(3)I (and then [(11)C]CH(3)I) with excess 5-tributylstannyl-2'-deoxyuridine and -4'-thio-2'-deoxyuridine were investigated for the syntheses of [methyl-(11)C]thymidine and its stable analogue, 4'-[methyl-(11)C]thiothymidine as PET probes for cancer diagnosis. The previously reported conditions were attempted using Pd(2)(dba)(3)/P(o-CH(3)C(6)H(4))(3) (1?:?4 in molar ratio) at 130 °C for 5 min in DMF, giving desired products only in 32 and 30% yields. Therefore, we adapted the current reaction conditions developed in our laboratory for heteroaromatic compounds. The reaction using CH(3)I/stannane/Pd(2)(dba)(3)/P(o-CH(3)C(6)H(4))(3)/CuCl/K(2)CO(3) (1?:?25?:?1?:?32?:?2?:?5) at 80 °C gave thymidine in 85% yield. Whereas, CH(3)I/stannane/Pd(2)(dba)(3)/P(o-CH(3)C(6)H(4))(3)/CuBr/CsF (1?:?25?:?1?:?32?:?2?:?5) including another CuBr/CsF system promoted the reaction at a milder temperature (60 °C), giving thymidine in 100% yield. Chemo-response of thiothymidine-precursor was different from thymidine system. Thus, the above optimized conditions including CuBr/CsF system gave 4'-thiothymidine only in 40% yield. The reaction using 5-fold amount of CuBr/CsF at 80 °C gave much higher yield (83%), but unexpectedly, the reaction was accompanied by a considerable amount of undesired destannylated product. Such destannylation was greatly suppressed by changing to a CuCl/K(2)CO(3) system using CH(3)I/stannane/Pd(2)(dba)(3)/P(o-CH(3)C(6)H(4))(3)/CuCl/K(2)CO(3) (1?:?25?:?1?:?32?:?2?:?5) at 80 °C, giving the 4'-thiothymidine in 98% yield. The each optimized conditions were successfully applied to the syntheses of the corresponding PET probes in 87 and 93% HPLC analytical yields. [(11)C]Compounds were isolated by preparative HPLC after the reaction conducted under slightly improved conditions, exhibiting sufficient radioactivity of 3.7-3.8 GBq and specific radioactivity of 89-200 GBq μmol(-1) with radiochemical purity of ≥99.5% for animal and human PET studies.  相似文献   

4.
Described is an asymmetric synthesis of cyclic and acyclic allylic S-aryl and S-alkyl sulfones through a highly selective palladium(0)-catalyzed 1,3-rearrangement of racemic allylic sulfinates. Treatment of racemic cyclic and acyclic allylic S-tolyl- and S-tert-butylsulfinates with Pd(2)(dba)(3).CHCl(3) as precatalyst and N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphosphino)benzamide] as ligand for the palladium atom afforded the corresponding isomeric allylic S-tolyl and S-tert-butyl sulfones of 93-99% ee in 82-96% yield. The rearrangement of the allylic sulfinates most likely proceeds in an intermolecular fashion via formation of a cationic pi-allylpalladium complex and the sulfinate ion. The racemic allylic sulfinates were obtained from the corresponding racemic alcohols and racemic tolylsulfinyl chloride and racemic tert-butylsulfinyl chloride, respectively, in high yields. Rearrangement of the racemic tert-butylsulfinic acid 2-cyclooct-1-enyl ester with Pd(2)(dba)(3).CHCl(3) and the bisphosphane was accompanied by a highly selective kinetic resolution of the substrate and gave at 50% conversion the (R)-configured sulfinate as mixture of the S(S) and R(S) diastereomers of 92% ee and 85% ee and the (S)-configured 3-tert-butylsulfonyl cyclooctene sulfone 15a with 98% ee in almost quantitative yields.  相似文献   

5.
A series of planar-chiral ferrocene alkenylphosphines, (S(p))-2-(diphenylphosphino)-1-vinylferrocene (2), (S(p))-2-(diphenylphosphino)-1-(prop-1-en-1-yl)ferrocene (3; as a mixture of Z and E isomers in ca. 5:1 ratio), and (E,S(p))-2-(diphenylphosphino)-1-(2-phenylethen-1-yl)ferrocene ((E)-4), was obtained by Wittig and Horner-Wadsworth-Emmons reactions from the common precursor, (S(p))-2-(diphenylphosphino)ferrocene-1-carboxaldehyde (1). Coordination properties of these novel ferrocene donors were studied in their palladium(II) and tungsten(0)-carbonyl complexes. The reaction between 2 and [{Pd(mu-Cl)(L(NC))}2] (5, L(NC) = 2-{(dimethylamino)methyl-kappaN}phenyl-kappaC(1)) gave the bridge-cleavage product [PdCl(L(NC))(2-kappaP)] (6) while the reaction with [Pd(L(NC))(MeCN)2]ClO4 (7) yielded the cationic bis(chelate) [Pd(L(NC))(2-eta2:kappaP)]ClO4 (8). Chelate complexes of the type [W(CO)4(L-eta2:kappaP)] (9 with L = 2; (Z/E)-10 with L = (Z/E)-3) were obtained by reacting [W(CO)4(cod)] (cod = eta2:eta2-cycloocta-1,5-diene) with the appropriate phosphinoalkene in refluxing toluene while a similar reaction with (E)-4 yielded mixtures of [W(CO)5(4-kappaP)] ((E)-11) and [W(CO)4(4-eta2:kappaP)] ((E)-12). All compounds were characterized by spectral methods (multinuclear NMR, IR, MS, and CD), and the structures of 1, 2, 8, 9, (Z/E)-10, and (E)-11 were corroborated by X-ray diffraction analysis. Ligands 2 and (E)-4 as well as their complexes 6, 8, 9, (E)-11, and (E)-12 were further studied by electrochemical methods.  相似文献   

6.
The phosphinitooxazoline 4,4-dimethyl-2-[1-oxy(diphenylphosphine)-1-methylethyl]-4,5-dihydrooxazole (9), the corresponding phosphinitopyridine ligands 2-ethyl-[1'-methyl-1'-oxy(diphenylphosphino)]pyridine (11) and 2-ethyl-6-methyl-[1'-methyl-1'-oxy(diphenylphosphino)]pyridine (12), which have a one-carbon spacer between the phosphinite oxygen and the heterocycle, and the homologous ligand 2-propyl-[2'-methyl-2'-oxy(diphenylphosphino)]pyridine (13), with a two-carbon spacer, were prepared in good yields. The corresponding mononuclear [NiCl(2)(P,N)] complexes 14 (P,N = 9), 15 (P,N = 11), and 16 (P,N = 12) and the dinuclear [NiCl(micro-Cl)(P,N)](2) 17 (P,N = 13) Ni(II) complex were evaluated in the catalytic oligomerization of ethylene. These four complexes were characterized by single-crystal X-ray diffraction in the solid state and in solution with the help of the Evans method, which indicated differences between the coordination spheres in the solution and the solid state. In the presence of methylalumoxane (MAO) or AlEt(3), only the decomposition of the Ni complexes was observed. However, complexes 14-17 provided activities up to 50000 mol C(2)H(4)/(mol Ni).h (16 and 17) in the presence of only 6 equiv of AlEtCl(2). The observed selectivities for ethylene dimers were higher than 91% (for 14 or 15 in the presence of only 1.3 equiv of AlEtCl(2)). The activities for 14-17 were superior to that of [NiCl(2)(PCy(3))(2)], a typical dimerization catalyst taken as a reference. The selectivities of the complexes 14-17 for ethylene dimers and alpha-olefins were the same order of magnitude. From the study of the phosphinite 9/AlEtCl(2) system, we concluded that in our case ligand transfer from the nickel atom to the aluminum cocatalyst is unlikely to represent an activation mechanism.  相似文献   

7.
Chen YD  Zhang LY  Shi LX  Chen ZN 《Inorganic chemistry》2004,43(23):7493-7501
Reaction of Pt(diimine)(edt) (edt = 1,2-ethanedithiolate) with M(2)(dppm)(2)(MeCN)(2)(2+) (dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(edt)(mu-SH)(dppm)(3)](ClO(4)) (11) and [PtCu(2)(diimine)(2)(edt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy), 12; 4,4'-dibutyl-2,2'-bipyridine (dbbpy), 13; phenanthroline (phen), 14; 5-bromophenanthroline (brphen), 15) when M = Cu(I). The reaction, however, afforded tetra- and trinuclear complexes [Pt(2)Ag(2)(edt)(2)(dppm)(2)](SbF(6))(2) (17) and [PtAu(2)(edt)(dppm)(2)](SbF(6))(2) (21) when M = Ag(I) and Au(I), respectively. The complexes were characterized by elemental analyses, electrospray mass spectroscopy, (1)H and (31)P NMR, IR, and UV-vis spectrometry, and X-ray crystallography for 14, 17, and 18. The Pt(II)Cu(I)(2) heterotrinuclear complexes 11-15 exhibit photoluminescence in the solid states at 298 K and in the frozen acetonitrile glasses at 77 K. It is likely that the emission originates from a ligand-to-metal charge transfer (dithiolate-to-Pt) (3)[p(S) --> d(Pt)] transition for 11 and from an admixture of (3)[d(Cu)/p(S)-pi(diimine)] transitions for 12-16. The Pt(II)(2)Ag(I)(2) heterotetranuclear complexes 17 and 18 are nonemissive in the solid states and in solutions at 298 K but show photoluminescence at 77 K. The Pt(II)Au(I)(2) heterotrinuclear complexes 19-21, however, are luminescent at room temperature in the solid state and in solution. Compounds 19 and 20 afford negative solvatochromism associated with a charge transfer from an orbital of a mixed metal/dithiolate character to a diimine pi orbital.  相似文献   

8.
The absolute structures of some naturally occurring chiral 2-isopropenyl-2,3-dihydrobenzofurans, (+)-remirol (1a), (+)-remiridiol (1b), (+)-angenomalin (2), and (+)-isoangenomalin (3), were studied by respective chiral synthesis. Kinetic resolutions of racemic 2-isopropenyl-2,3-dihydrobenzofurans, 2-isopropenyl-4,6-dimethoxy-2,3-dihydrobenzofuran (4), 4-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran-5-carbaldehyde (8), and 2-isopropenyl-6-(MOM)oxy-2,3-dihydrobenzofuran-5-carbaldehyde (11c), by Sharpless dihydroxylation using (DHQ)(2)AQN or (DHQD)(2)AQN gave the corresponding chiral 2-isopropenyl-2,3-dihydrobenzofurans. Chiral (S)-(+)-4 (99% ee, using (DHQD)(2)AQN) was converted to natural remirol (S)-(+)-1a and then to natural remiridiol (S)-(+)-1b. (S)-(+)-8 (97% ee, using (DHQD)(2)AQN) was converted to natural angenomalin (S)-(+)-2. (R)-(-)-11c (>99% ee, using (DHQ)(2)AQN), was converted to natural isoangenomalin (R)-(+)-3. Thus, the absolute structures of natural remirol (+)-1a and remiridiol (+)-1b and angenomalin (+)-2 were determined to be S, and the structure of natural isoangenomalin (+)-3 was R.  相似文献   

9.
The ligand 1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene, 3, was used to synthesize a mononuclear Rh(II) complex [(eta(1):eta(6):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh][PF(6)](2), 6+, in a two-legged piano-stool geometry. The structural and electronic properties of this novel complex including a single-crystal EPR analysis are reported. The complex can be cleanly interconverted with its Rh(I) form, allowing for a comparison of the structural properties and reactivity of both oxidation states. The Rh(I) form 6 reacts with CO, tert-butyl isocyanide, and acetonitrile to form a series of 15-membered mononuclear cyclophanes [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CO)(3)][PF(6)] (8), [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CNC(CH(3))(3))(2)][PF(6)] (10), and [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CO)(CH(3)CN)][PF(6)] (11). The Rh(II) complex 6+ reacts with the same small molecules, but over shorter periods of time, to form the same Rh(I) products. In addition, a model two-legged piano-stool complex [(eta(1):eta(6):eta(1)-1,4-bis[3-(diphenylphosphino)propoxy]-2,3,5,6-tetramethylbenzene)Rh][B(C(6)F(5))(4)], 5, has been synthesized and characterized for comparison purposes. The solid-state structures of complexes 5, 6, 6+, and 11 are reported. Structure data for 5: triclinic; P(-)1; a = 10.1587(7) A; b = 11.5228(8) A; c = 17.2381(12) A; alpha = 96.4379(13) degrees; beta = 91.1870(12) degrees; gamma = 106.1470(13) degrees; Z = 2. 6: triclinic; P(-)1; a = 11.1934(5) A; b = 12.4807(6) A; c = 16.1771(7) A; alpha = 81.935(7) degrees; beta = 89.943(1) degrees; gamma = 78.292(1) degrees; Z = 2. 6+: monoclinic; P2(1)/n; a = 11.9371(18) A; b = 32.401(5) A; c = 12.782(2) A; beta = 102.890(3) degrees; Z = 4. 11: triclinic; P(-)1; a = 13.5476(7) A; b = 13.8306(7) A; c = 14.9948(8) A; alpha = 74.551(1) degrees; beta = 73.895(1) degrees; gamma = 66.046(1) degrees; Z = 2.  相似文献   

10.
It found that the Ru(3)(CO)(12) coordinated with 2-(diphenylphosphino)benzonitrile (2-DPPBN) to effectively catalyze the [2 + 2 + 2] cyclotrimerization of the trifluoromethyl group substituted internal alkynes in high yields with up to >98% regioselectivity. Isolation of a ruthenacyclopentadiene was successful and confirmed that the complex is a reaction intermediate.  相似文献   

11.
The selenium adducts of germa- and stanna-closo-dodecaborate can coordinate at platinum via the selenium atom and result in the products [Pt(dppp)(Se-TB(11)H(11))(2)](2-) (T = Ge, Sn) (dppp = 1,3-bis(diphenylphosphino)propane). The monomeric tin compound [Pt(dppp)(Se-SnB(11)H(11))(2)](2-) is converted to a dimeric complex [Pt(2)(dppp)(2)(μ(2),μ'(2)-η(2)-Se(2)SnB(11)H(11))]. The new compounds were characterized by NMR spectroscopy in solution ((1)H, (11)B, (13)C, (31)P, (77)Se, (119)Sn, (195)Pt), elemental analysis and single crystal X-ray diffraction.  相似文献   

12.
The reaction of 2 equiv of LiSeCC-n-C(5)H(11) (1) with cis-PtCl(2)(Ph(3)P)(2) (2) gives a mixture of the cis and trans isomers of Pt(Ph(3)P)(2)(SeCC-n-C(5)H(11))(2) (3), which slowly isomerizes in CH(2)Cl(2) to the preferred trans form trans-3. The closely related cis-[Pt(dppf)(2)(SeCC-n-C(5)H(11))(2)] (4) (dppf = bis(diphenylphosphino)ferrocene) was prepared by a similar metathetical reaction using the platinum chloride complex of the chelating dppf to impose the cis geometry. The structures of the cis and trans complexes have been investigated in solution by heteronuclear NMR ((31)P, (77)Se, and (195)Pt) and, in the cases of trans-3 and 4, characterized in the solid state by single-crystal X-ray diffraction. Changing the coordination geometry from cis to trans induces significant changes in the structural and spectroscopic parameters, which do not comply with the previously anticipated donor-acceptor properties of selenolate ligands.  相似文献   

13.
The methoxycarbonylation of alkenes catalyzed by palladium(II) complexes with P,N-donor ligands, 2-(diphenylphosphinoamino)pyridine (Ph2PNHpy), 2-[(diphenylphosphino)methyl]pyridine (Ph2PCH2py), and 2-(diphenylphosphino)quinoline (Ph2Pqn) has been investigated. The results show that the complex [PdCl(PPh3)(Ph2PNHpy)]Cl or an equimolar mixture of [PdCl2(Ph2PNHpy)] and PPh3, in the presence of p-toluensulfonic acid (TsOH), is an efficient catalyst for this reaction. This catalytic system promotes the conversion of styrene into methyl 2-phenylpropanoate and methyl 3-phenylpropanoate with nearly complete chemoselectivity, 98% regioselectivity in the branched isomer, and high turnover frequency, even at alkene/Pd molar ratios of 1000. Best results were obtained in toluene-MeOH (3 : 1) solvent. The Pd/Ph2PNHpy catalyst is also efficient in the methoxycarbonylation of cyclohexene and 1-hexene, although with lower rates than with styrene. Related palladium complexes [PdCl(PPh3)L]Cl (L = Ph2PCH2py and Ph2Pqn) show lower activity in the methoxycarbonylation of styrene than that of the 2-(diphenylphosphinoamino)pyridine ligand. Replacement of the last ligand by (diphenylphosphino)phenylamine (Ph2PNHPh) or 2-(diphenylphosphinoaminomethyl)pyridine (Ph2PNMepy) also reduces significantly the activity of the catalyst, indicating that both the presence of the pyridine fragment as well as the NH group, are required to achieve a high performing catalyst. Isotopic labeling experiments using MeOD are consistent with a hydride mechanism for the [PdCl(PPh3)(Ph2PNHpy)]Cl catalyst.  相似文献   

14.
An asymmetric synthesis of a selective endothelin A receptor antagonist 1b is described. Asymmetric conjugate addition of aryllithium derived from 18 to the chiral oxazoline 17 followed by hydrolysis afforded 15 in 96% ee via purification as (S)-(-)-1-phenylethylamine salt. Pd(OAc)(2)/dppf (1,1'-bis(diphenylphosphino)ferrocene) catalyzed carbonylation followed by chemoselective addition of aryllithium derived from 23 which gave ketone 24. Diastereoselective reduction of the ketone with catecholborane followed by concomitant activation of the resulting alcohol and cyclization gave the late intermediate 26. Introduction of amino moiety on the pyridine ring by imidoyl rearrangement followed by deprotection and purification by crystallization furnished the enantiomerically pure target molecule 1b in 8% overall yield from 16.  相似文献   

15.
Treatment of cis-[W(N2)2(PMe2Ph)4] (5) with an equilibrium mixture of trans-[RuCl(eta 2-H2)(dppp)2]X (3) with pKa = 4.4 and [RuCl(dppp)2]X (4) [X = PF6, BF4, or OTf; dppp = 1,3-bis(diphenylphosphino)propane] containing 10 equiv of the Ru atom based on tungsten in benzene-dichloroethane at 55 degrees C for 24 h under 1 atm of H2 gave NH3 in 45-55% total yields based on tungsten, together with the formation of trans-[RuHCl(dppp)2] (6). Free NH3 in 9-16% yields was observed in the reaction mixture, and further NH3 in 36-45% yields was released after base distillation. Detailed studies on the reaction of 5 with numerous Ru(eta 2-H2) complexes showed that the yield of NH3 produced critically depended upon the pKa value of the employed Ru(eta 2-H2) complexes. When 5 was treated with 10 equiv of trans-[RuCl(eta 2-H2)(dppe)2]X (8) with pKa = 6.0 [X = PF6, BF4, or OTf; dppe = 1,2-bis(diphenylphosphino)ethane] under 1 atm of H2, NH3 was formed in higher yields (up to 79% total yield) compared with the reaction with an equilibrium mixture of 3 and 4. If the pKa value of a Ru(eta 2-H2) complex was increased up to about 10, the yield of NH3 was remarkably decreased. In these reactions, heterolytic cleavage of H2 seems to occur at the Ru center via nucleophilic attack of the coordinated N2 on the coordinated H2 where a proton (H+) is used for the protonation of the coordinated N2 and a hydride (H-) remains at the Ru atom. Treatment of 5, trans-[W(N2)2(PMePh2)4] (14), or trans-[M(N2)2(dppe)2] [M = Mo (1), W (2)] with Ru(eta 2-H2) complexes at room temperature led to isolation of intermediate hydrazido(2-) complexes such as trans-[W(OTf)(NNH2)(PMe2Ph)4]OTf (19), trans-[W(OTf)(NNH2)(PMePh2)4]OTf (20), and trans-[WX(NNH2)(dppe)2]+ [X = OTf (15), F (16)]. The molecular structure of 19 was determined by X-ray analysis. Further ruthenium-assisted protonation of hydrazido(2-) intermediates such as 19 with H2 at 55 degrees C was considered to result in the formation of NH3, concurrent with the generation of W(VI) species. All of the electrons required for the reduction of N2 are provided by the zerovalent tungsten.  相似文献   

16.
Racemic and enantiopure ((p)()S)-1-bromo-2-methylferrocene 6 were synthesized in 4 steps from 2-(4,4-dimethyloxazolinyl)ferrocene and (S)-2-(4-methylethyloxazolinyl)ferrocene, respectively (46 and 81% overall yield). Bromolithium exchange and addition of ClPR(2) gave the corresponding racemic or enantiopure 2-methylferrocenyl phosphine ligands 2-MeFcPR(2) 11 (R = Ph), 12 (R = Cy), and 13 (R = (t)Bu) in 28-93% yield. Use of PCl(3) gave the C(3)-symmetric phosphine (2-MeFc)(3)P 5 from ((p)()S)-6(72% yield) but racemic 6 did not lead to the formation of triferrocenyl phosphines. Combination of 5 and Pd(2)(dba)(3) gave an active catalyst for the Suzuki reaction of aryl chlorides, for example, 4-chlorotoluene and phenylboronic acid reacted at only 60 degrees C in dioxane (86% yield). Other examples are reported together with the use of 12 in this same protocol. From the X-ray crystal structure of 5 the cone angle was determined as 211 degrees. With this, and the electronic character of 11, 12, and other phosphines (derived from nu(CO) of trans-[(R(3)P)(2)Rh(CO)Cl]), an analysis is made of the steric and electronic influences on ligand activity in the Suzuki reaction.  相似文献   

17.
The rhenacarborane salt Cs[Re(CO)3(eta5-7,8-C2B9H11)] (1) has been used to synthesize the tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Ph2P(CH2)2PPh2]] (3) where two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments have been shown by X-ray crystallography to be bridged by a single 1,2-bis(diphenylphosphino)ethane ligand. Reaction of 1 with Ag[BF4] in the presence of the ligands bis- or tris(pyrazol-1-yl)methane yields the complexes [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-CH2(C3H3N2-1)2]] (4) or [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-kappa1,kappa2-CH(C3H3N2-1)3]] (5), respectively. From X-ray studies, the former comprises a Re-Ag bond bridged by the carborane cage and with the bis(pyrazol-1-yl)methane coordinating the silver(I) center in an asymmetric kappa(2) mode. Complex 5 was unexpectedly found to contain a tris(pyrazol-1-yl)methane bridging two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments in a kappa1,kappa2 manner. Treatment of 1 with Ag[BF4] in the presence of 2,2'-dipyridyl and 2,2':6',2' '-terpyridyl yields [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-(C5H4N-2)(2)]] (6) and [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa3-C5H3N(C5H4N-2)2-2,6]] (7). The X-ray structure determination of 7 revealed an unusual pentacoordinated silver(I) center, asymmetrically ligated by a kappa3-2,2':6',2' '-terpyridyl molecule. The same synthetic procedure using N,N,N',N'-tetramethylethylenediamine gave a tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Me2N(CH2)2NMe2]2] (8) which is believed, in the solid state, to be bridged between the silver atoms by two of the diamine molecules. The salt 1 with Ag[BF4] in the absence of any added ligand gave the tetrameric cluster [ReAg[mu-5,6,10-(H)3-eta5-7,8-C2B9H8](CO)3]4 (9) where, in the solid state, four [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] units are held together by long interunit B-H right harpoon-up Ag bonds.  相似文献   

18.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

19.
The first phosphinooxazoline chelate complexes of iron were synthesized, and their structural and electronic properties were studied.The known phosphinooxazolines 2-(2-(diphenylphosphino)phenyl)-4,5-dihydrooxazole (7a), 2-(2-(diphenylphosphino)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (7b), (S)-4-benzyl-2-(2-(diphenylphosphino)phenyl)-4,5-dihydrooxazole (7e) and (R)-2-(2-(diphenylphosphino)phenyl)-4-phenyl-4,5-dihydrooxazole (7f) were synthesized by a modified three step literature procedure with improved 67-60% overall yields. The new electronically tuned phosphinooxazolines 2-(5-bromo-2-(diphenylphosphino)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (7c), 3-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-4-(diphenylphosphino)-N,N-dimethylaniline (7d) and 2-(2-(diphenylphosphino)-3-(trifluoromethyl)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (7g) were synthesized in three to six steps with 59-29% overall yields. Reaction of 7a-f with CpFe(CO)2I (110 °C, 2 h, toluene) gave the iodide salts of the new iron phosphinooxazoline complexes [CpFe(CO)(7a-f)]+ in 87-21% yield. The new complexes were characterized by X-ray and the molecular structures confirm the octahedral coordination geometry and the half-sandwich structure about the iron center. The impact of different oxazoline ligands on the steric and electronic properties of their iron complexes was determined by analysis of selected bond lengths, νCO stretching frequency and the oxidation potentials of the ligands and the iron complexes.  相似文献   

20.
The reaction of the functional diphosphine 1 [1 = 2-(bis(diphenylphosphino)methyl-oxazoline] with [PtCl(2)(NCPh)(2)] or [PdCl(2)(NCPh)(2)], in the presence of excess NEt(3), affords [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pt(1(-H)-P,P)(2)], 3a) and [Pd{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pd(1(-H)-P,P)(2)], 3b), respectively, in which 1(-H) is (oxazoline-2-yl)bis(diphenylphosphino)methanide. The reaction of 3b with 2 equiv of [AuCl(tht)] (tht = tetrahydrothiophene) afforded [Pd(1(-H)-P,N)(2)(AuCl)(2)] (4), as a result of the opening of the four-membered metal chelate since ligand 1(-H), which was P,P-chelating in 3b, behaves as a P,N-chelate toward the Pd(II) center in 4 and coordinates to Au(I) through the other P donor. In the absence of a base, the reaction of ligand 1 with [PtCl(2)(NCPh)(2)] in MeCN or CH(2)Cl(2) afforded the isomers [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}(2)]Cl(2) ([Pt(1'-P,P)(2)]Cl(2) (5), 1' = 2-(bis(diphenylphosphino)methylene)-oxazolidine) and [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}{Ph(2)PCH═C(OCH(2)CH(2)N(PPh(2))}]Cl(2) ([Pt(1'-P,P)(2'-P,P)]Cl(2) (6), 2' = (E)-3-(diphenylphosphino)-2-((diphenylphosphino)methylene)oxazolidine]. The P,P-chelating ligands in 5 result from a tautomeric shift of the C-H proton of 1 to the nitrogen atom, whereas the formation of one of the P,P-chelates in 6 involves a carbon to nitrogen phosphoryl migration. The reaction of 5 and 6 with a base occurred by deprotonation at the nitrogen to afford 3a and [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PCH═COCH(2)CH(2)N(PPh(2))}]Cl ([Pt(1(-H)-P,P)(2'-P,P)]Cl (7)], respectively. In CH(2)Cl(2), an isomer of 3a, [Pt{Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PC(PPh(2))═COCH(2)CH(2)N}] ([Pt(1(-H)-P,P)(1(-H)-P,N)] (8)), was obtained as a side product which contains ligand 1(-H) in two different coordination modes. Complexes 3b·4CH(2)Cl(2), 4·CHCl(3), 6·2.5CH(2)Cl(2), and 8·CH(2)Cl(2) have been structurally characterized by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号