首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
纳米通道内表面浸润性对气泡的作用   总被引:2,自引:0,他引:2  
解辉  刘朝 《物理化学学报》2009,25(12):2537-2542
运用分子动力学模拟方法研究了在质量力驱动下不同浸润性壁面纳米通道中气泡的分布及其运动状况, 提出了一种统计纳米通道中气泡运动速度的方法. 结果显示, 在亲水性壁面的纳米通道中, 气泡位于通道中间, 气泡的运动速度接近但小于通道中心流速, 在势能强度较大时, 壁面吸附的分子较多, 气泡也较大, 反之则气泡较小; 对超疏水性壁面, 气泡则位于固壁附近, 两个壁面形成对称的一对气泡, 气泡的运动速度接近但大于边缘速度. 流体总的流动速度随着流体粒子与壁面粒子作用的减弱而增大, 滑移速度则逐渐从负转变为正.  相似文献   

2.
The electromagnetophoretic migration of micro-particles in a capillary flow system was demonstrated using a homogeneous magnetic field applied at right angles to an electric current. We utilized a high-magnetic-field of 10 T for observing this phenomenon. When the direction of the electric current was alternatively changed, polystyrene latex particles in a flowing aqueous medium migrated zigzag affected by a Lorentz force exerted on the medium. Carbon particles also migrated in the same manner with polystyrene particles. Further, we tried the electromagnetophoretic migration of biological particles, such as yeasts and human red blood cells. The migration velocity component perpendicular to the flow was proportional to both the electric current and the magnetic flux density. These results proved that the dominant force of the zigzag migration was an electromagnetophoretic buoyancy generated in the flowing medium. Moreover, it was found that the force exerted on the particles in the magnetic field of 10 T was sufficient for the desorption of particles adsorbed on the capillary wall.  相似文献   

3.
We consider the effects that step changes in zeta potential and cross section have on electroosmosis in long-and-narrow channels with arbitrary cross-sectional shapes. The Stokes equation of flow is solved analytically utilizing the thin Debye layer approximation to provide effective slip velocities on the channel walls. The effects of channel dimensions, surface potentials, applied pressure drop, and applied voltage are discussed. One anecdotal case, a two-region rectangular channel, is presented to illustrate the solution. The flow in each region is a combination of a uniform electroosmotic flow and a nonuniform pressure-driven flow. The electroosmotic pumping causes the pressure gradient in each region to adjust so that the flow rate is the same in each region and the overall applied pressure drop is met, resulting in convex velocity profiles in some regions and concave velocity profiles in other regions. By appropriate choice of the applied pressure drop, flat velocity profiles may be achieved in one or more regions.  相似文献   

4.
Capillary liquid chromatography at moderately high pressures and capillary electrochromatography (CEC) have been combined to drive the mobile phase through capillary columns packed with small diameter particles. In a column packed with 1.5 microm nonporous particles, linear velocities near 3mm/s were observed when combining inlet pressures of 690 bar (10,000 psi) and an applied voltage of 25 kV. Optimum linear velocity for the column was achieved using a pressure-voltage combination of 350 bar (5000 psi) and 5 kV. Separation efficiencies at near optimum linear velocity agreed with those predicted by the van Deemter equation for liquid chromatography. Retention factors were observed to decrease under pressure-voltage combination as the voltage was increased; such a behavior has been attributed to Joule heating effects.  相似文献   

5.
The adhesive characteristics of thin films (0.2-2 μm) of linear poly(dimethylsiloxane) (PDMS) liquids with a wide range of molecular weights have been measured using an atomic force microscope with a colloid probe (diameters 5 and 12 μm) for different separation velocities. The data were consistent with a residual film in the contact region having a thickness of ~6 nm following an extended dwell time before separation of the probe. It was possible to estimate the maximum adhesive force as a function of the capillary number, Ca, by applying existing theoretical models based on capillary interactions and viscous flow except at large values of Ca in the case of viscoelastic fluids, for which it was necessary to develop a nonlinear viscoelastic model. The compliance of the atomic force microscope colloid beam was an important factor in governing the retraction velocity of the probe and therefore the value of the adhesive force, but the inertia of the beam and viscoelastic stress overshoot effects were not significant in the range of separation velocities investigated.  相似文献   

6.
Electro-hydrodynamic micro-fluidic mixer   总被引:1,自引:0,他引:1  
Fluid mixing in microchannels is needed for many applications ranging from bio-arrays to micro-reactors, but is typically difficult to achieve. A simple geometry micro-mixer is proposed based on the electro-hydrodynamic (EHD) force present when the fluids to be mixed have different electrical properties and are subjected to an electric field. The electrodes are arranged so that the electric field is perpendicular to the interface between the two fluids, creating a transversal secondary flow. The technique is demonstrated experimentally using the flow of two liquids with identical viscosity and density, but different electrical properties. The volume flow rate and average velocity are 0.26 microl s(-1) and 4.2 mm s(-1), respectively, corresponding to a Reynolds number Re= 0.0174. The effect of a continuous (DC) electric field and two alternating (AC)- sinusoidal and square - electric fields is explored. At the appropriate parameter values, very good mixing takes place in less than 0.1 s, over a very short distance (within a fraction of the width 250 microm of the electrodes).  相似文献   

7.
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.  相似文献   

8.
To elucidate the nature of processes involved in electrically driven particle aggregation in steady fields, flows near a charged spherical colloidal particle next to an electrode were studied. Electrical body forces in diffuse layers near the electrode and the particle surface drive an axisymmetric flow with two components. One is electroosmotic flow (EOF) driven by the action of the applied field on the equilibrium diffuse charge layer near the particle. The other is electrohydrodynamic (EHD) flow arising from the action of the applied field on charge induced in the electrode polarization layer. The EOF component is proportional to the current density and the particle surface (zeta) potential, whereas our scaling analysis shows that the EHD component scales as the product of the current density and applied potential. Under certain conditions, both flows are directed toward the particle, and a superposition of flows from two nearby particles provides a mechanism for aggregation. Analytical calculations of the two flow fields in the limits of infinitesimal double layers and slowly varying current indicate that the EOF and EHD flow are of comparable magnitude near the particle whereas in the far field the EHD flow along the electrode is predominant. Moreover, the dependence of EHD flow on the applied potential provides a possible explanation for the increased variability in aggregation velocities observed at higher field strengths.  相似文献   

9.
A novel microchip device for electrospray ionization has been fabricated and interfaced to a time-of-flight mass spectrometer. Fluid is electrokinetically transported through the chip to a fine fused-silica capillary inserted directly into a channel at the edge of the device. Electrospray is established at the tip of the capillary, which assures a stable, efficient spray. The electric potential necessary for electrospray generation and the voltage drop for electroosmotic pumping are supplied through an electrically permeable glass membrane contacting the fluidic channel holding the capillary. The membrane is fabricated on the microchip using standard photolithographic and wet chemical etching techniques. Performance relative to other microchip electrospray sources has been evaluated and the device tested for potential use as a platform for on-line electrophoretic detection. Sensitivity was found to be approximately three orders of magnitude better than spraying from the flat edge of the chip. The effect of the capillary on electroosmotic flow was examined both experimentally and theoretically.  相似文献   

10.
The influence of a high electric field applied on both fluid flow and particle velocities is quantified at large Peclet numbers. The experiments involved simultaneous particle image velocimetry and flow rate measurements. These are conducted in polydimethylsiloxane channels with spherical nonconducting polystyrene particles and DI water as the background flow. The high electric field tests produced up to three orders of magnitude higher electrokinetic velocities than any previous reports. The maximum electroosmotic velocity and electrophoretic velocity measured were 3.55 and 2.3 m/s. Electrophoretic velocities are measured over the range of 100 V/cm < E < 250 000 V/cm. The results are separated according to the different nonlinear theoretical models, including low and high Peclet numbers, and weak and strong concentration polarization. They show good agreement with the models. Such fast velocities could be used for flow separation, mixing, transport, control, and manipulation of suspended particles as well as microthrust generation among other applications.  相似文献   

11.
The electric field and flow field gradients near an electrified converging channel are amenable to separating and focusing specific classes of electrokinetic material, but the detailed local electric field and flow dynamics in this region have not been thoroughly investigated. Finite elemental analysis was used to develop a model of a buffer reservoir connected to a smaller channel to simulate the electrophoretic and flow velocities (which correspond directly to the respective electric and flow fields) at a converging entrance. A detailed PTV (Particle Tracking Velocimetry) study using charged fluorescent microspheres was performed to assess the model validity both in the absence and presence of an applied electric field. The predicted flow velocity gradient from the model agreed with the PTV data when no electric field was present. Once the additional forces that act on the large particles required for tracing (dielectrophoresis) were included, the model accurately described the velocity of the charged particles in electric fields.  相似文献   

12.
The formation of a two-dimensional aggregate of 25 microm latex particles in a 1.5 MHz ultrasound standing wave (USW) field and its disintegration in a flow were studied. The aggregate was held in the pressure node plane, which allowed continuous microscope observation and video recording of the processes. The trajectories and velocities of the particles approaching the formation site were analyzed by particle image velocimetry (PIV). Since the direct radiation force on the particles dominated the drag due to acoustic streaming, the acoustic pressure profile in the vicinity of the aggregate was quantifiable. The drag coefficients D(coef) for 2- to 485-particle aggregates were estimated from the balance of the drag force FD and the buoyancy-corrected gravitational force during sedimentation on termination of the ultrasound when the long axis of the aggregate was in the vertical plane. D(coef) were calculated from FD as proportional to the aggregate velocity. Experiments on particle detachment by flow (in-plane velocity measured by PIV) from horizontal aggregates suspended in deionized water and CaCl2 solution of different concentrations showed that the mechanical strength of the aggregates depended on the acoustic pressure amplitude P0 and ionic strength of the solution. In deionized water the flow velocity required to detach the first single particle from an aggregate increased from 1 mm s-1 at P0 = 0.6 MPa to 4.2 mm s-1 at P0 = 1.4 MPa. The balance of forces acting on particles in a USW trap is discussed. The magnitude of the shear stress employed ( approximately 0.05 Pa) and separation forces suggests that this technique can be applied to studying the mechanical responses of cell aggregates to hydrodynamic flow, where cell-cell interaction can be separated from the effects of solid substrata.  相似文献   

13.
Lateral force microscopy (LFM) is an application of atomic force microscopy (AFM) to sense lateral forces applied to the AFM probe tip. Recent advances in tissue engineering and functional biomaterials have shown a need for the surface characterization of their material and biochemical properties under the application of lateral forces. LFM equipped with colloidal probes of well-defined tip geometries has been a natural fit to address these needs but has remained limited to provide primarily qualitative results. For quantitative measurements, LFM requires the successful determination of the lateral force or torque conversion factor of the probe. Usually, force calibration results obtained in air are used for force measurements in liquids, but refractive index differences between air and liquids induce changes in the conversion factor. Furthermore, in the case of biochemically functionalized tips, damage can occur during calibration because tip-surface contact is inevitable in most calibration methods. Therefore, a nondestructive in situ lateral force calibration is desirable for LFM applications in liquids. Here we present an in situ hydrodynamic lateral force calibration method for AFM colloidal probes. In this method, the laterally scanned substrate surface generated a creeping Couette flow, which deformed the probe under torsion. The spherical geometry of the tip enabled the calculation of tip drag forces, and the lateral torque conversion factor was calibrated from the lateral voltage change and estimated torque. Comparisons with lateral force calibrations performed in air show that the hydrodynamic lateral force calibration method enables quantitative lateral force measurements in liquid using colloidal probes.  相似文献   

14.
For electroosmotic pumping, a large direct‐current (DC) electric field (10+ V/cm) is applied across a liquid, typically an aqueous electrolyte. At these high voltages, water undergoes electrolysis to form hydrogen and oxygen, generating bubbles that can block the electrodes, cause pressure fluctuations, and lead to pump failure. The requirement to manage these gases constrains system designs. This article presents an alternative polar liquid for DC electrokinetic pumping, propylene carbonate (PC), which remains free of bubbles up to at least 10 kV/cm. This offers the opportunity to create electrokinetic devices in closed configurations, which we demonstrate with a fully sealed microfluidic hydraulic actuator. Furthermore, the electroosmotic velocity of PC is similar to that of water in PDMS microchannels. Thus, water could be substituted by PC in existing electroosmotic pumps.  相似文献   

15.
A simultaneous measurement technique for determining the migration velocity of a micrometer-sized particle in a capillary and the adsorption force to the inner surface of the capillary has been proposed. This technique is based on an electromagnetophoretic force being exerted on a micro-particle in an electrolyte solution, which is governed mainly by the electromagnetic buoyancy, when a homogeneous magnetic field is applied at a right angle to the electric current through the medium. By the electromagnetic buoyancy, micro-particles such as polystyrene, carbon and yeast were migrated perpendicular to the direction of the electric current and reached a fused-silica wall. A switching of the current direction could desorb the particle from the wall, and allowed to calculate the detaching force from the desorbing current. The migration velocity normalized to the size in the magnetic field of 10 T was increased in the order of yeast, carbon and polystyrene, while reflecting the decreasing order of the apparent conductivity of the particles. The desorption force could be measured up to 1 nN with a sensitivity of pN. The observed interaction forces of polystyrene and carbon were in the range of 250-600 pN with large deviations.  相似文献   

16.
In this article, we report the design of a microchip based hydraulic pump that employs a sodium silicate derived sol–gel structure for generating pressure-driven flow within a microfluidic network. The reported sol–gel structure was fabricated in a chosen location of our device by selectively retaining sodium silicate solution within a sub-micrometer deep segment via capillary forces, and then providing the precursor material appropriate thermal treatment. It was shown that while the molecular weight cut-off for these membranes is at least an order of magnitude smaller than their photo-polymerized counterparts, their electrical conductance is significant. Moreover, unlike their polymeric counterparts these structures were found to be capable of blocking electroosmotic flow, thereby generating a pressure-gradient around their interface with an open microchannel upon application of an electric field across the microchannel–membrane junction. In this work, a fraction of the resulting hydrodynamic flow was successfully guided to an electric field-free analysis channel to implement a pressure-driven assay. Our experiments show that the pressure-driven velocity produced in the analysis channel of our device varied linearly with the voltage applied across the sol–gel membrane and was nearly independent of the cross-sectional dimensions of the membrane and the microfluidic channels. With our current design pressure-driven velocities up to 1.7 mm/s were generated for an applied voltage of 2 kV, which easily covers the range of flow speeds that can minimize the plate height in most microfluidic separations. Finally, the functionality of our device was demonstrated by implementing a reverse phase chromatographic separation in the analysis channel of our device using the pressure-driven flow generated on-chip.  相似文献   

17.
A novel designed electro-osmotic pump (EOP) with simple structure was assembled using three 20 cm x 530 microm i.d. fused-silica capillaries packed with 20 +/- 5 nm silica grains for capillary liquid chromatography. It was found that the pump could generate pressures over 20 MPa and several microL/min flow rate for most of the liquids being delivered with the applied voltage less than 10 kV. By increasing the pressure, decreasing the applied voltage and the electrical current, the thermodynamic efficiency was about 1-4%. A practical application of the EOP in a 20cm x 150 microm i.d. 3 microm C18 fused-silica analytical capillary column demonstrated the applicability of the pump.  相似文献   

18.
Jing L  Dan G  Jianbin L  Guoxin X 《Electrophoresis》2011,32(3-4):414-422
A numerical method is used to simulate the motion and coalescence of air bubbles in a micro-channel under a nonuniform electric field. The channel is equipped with arrays of electrodes embedded in its wall and voltages are applied on the electrodes to generate a specified electric field gradient in the longitudinal direction. In the study, the Navier-Stokes equations are solved by using the level set method handling the deformable/moving interfaces between the bubbles and the ambient liquid. Both the polarization Coulomb force and the dielectrophoresis force are considered as the force source of the Navier-Stokes equations by solving the Maxwell's equations. The flow field equations and the electric field equations are coupled and solved by using the finite element method. The electric field characteristics and the dynamic behavior of a bubble are analyzed by studying the distributions of the electric field and the force, the deformation and the moving velocity of the air bubble. The result suggests that the model of dispersed drops suspended in the immiscible dielectric liquid and driven by a nonuniform electric field is an effective method for the transportation and coalescence of micro-drops.  相似文献   

19.
A simple method to perform selective on-line preconcentration of protein samples in capillary electrophoresis (CE) is described. The selectivity, based on protein electrophoretic mobility, was achieved by controlling electroosmotic flow (EOF). A short section of dialysis hollow fiber, serving as a porous joint, was connected between two lengths of fused silica capillary. High voltage was applied separately to each capillary, and the EOF in the system was controlled independently of the local electric field intensity by controlling the total voltage drop. An equation relating the EOF with the total voltage drop was derived and evaluated experimentally. On-line preconcentration of both positively charged and negatively charged model proteins was demonstrated without using discontinuous background electrolytes, and protein analytes were concentrated by approximately 60-200-fold under various conditions. For positively charged proteins, positive voltages of the same magnitude were applied at the free ends of the connected capillaries while the porous joint was grounded. This provided a zero EOF in the system and a non-zero local electric field in each capillary to drive the positively charged analytes to the porous joint. CE separation was then initiated by switching the polarity of the high voltage over the second capillary. For negatively charged proteins, the procedure was the same except negative voltages were applied at the free ends of the capillaries. Mobility-based selective on-line preconcentration was also demonstrated with two negatively charged proteins, i.e. beta-lactoglobulin B and myoglobin. In this case, negative voltages of different values were applied at the free ends of the capillaries with different values, which provided a non-zero EOF in the system. The direction of EOF was the same as that of the electrophoretic migration velocities of the protein analytes in the first capillary and opposite in the second capillary. By controlling the EOF, beta-lactoglobulin B, which has a higher mobility, could be concentrated over 150-fold with a 15 min injection while myoglobin, which has a lower mobility, was eliminated from the system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号