首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photochemical properties of photoinduced omega-bond dissociation in naphthyl phenyl ketones having a phenylthiyl moiety as a leaving group, p-(alpha-naphthoyl)benzyl phenyl sulfide (NBPS) and 4-benzoyl-1-naphthylmethyl phenyl sulfide (BNMPS), in solution were investigated by laser flash photolysis techniques. Both ketones were shown to undergo photoinduced omega-bond cleavage of the C-S bond to release the phenyl thiyl radical (PTR) at room temperature. Irrespective of excitation wavelengths of NBPS, a quantum yield (Phi(rad)) of the PTR formation was obtained to be 0.1, whereas that for BNMPS was found to depend on the excitation wavelength, i.e., absorption bands from the ground state (S0) to the excited singlet states, S3, S2, and S1 of BNMPS; Phi(rad)(S3) = 0.77 and Phi(rad)(S2) = Phi(rad)(S1) = 1.0. By using triplet sensitization of p-phenylbenzophenone (PBP), efficiencies (alpha(rad)) of the radical formation in the lowest triplet state (T1(pi,pi*)) of NBPS and BNMPS were determined to be 0 and 1.0, respectively. The agreement between Phi(rad)(S1) and alpha(rad) values for BNMPS indicates that the C-S bond dissociation occurs in the T1 state via the S1 state via a fast intersystem crossing from the S1 to the T1 state. The wavelength dependence of the radical yields upon direct excitation of BNMPS was interpreted in terms of the C-S bond cleavage in the S3 state competing with internal conversion from the S3 to the S2 state. The smaller value of Phi(rad)(S3) than those of Phi(rad)(S1) and Phi(rad)(S2) was proposed to originate from the geminate recombination of singlet radical pairs produced by the bond dissociation via the S3 state. Photoinduced omega-cleavage of NBPS was concluded to take place only in the S1(n,pi*) state. Difference in reactivity of omega-cleavage between the triplet states of NBPS and BNMPS was interpreted in terms of localized triplet exciton in the naphthoyl moieties.  相似文献   

2.
Photochemical properties of photoinduced omega-bond dissociation in p-benzoylbenzyl phenyl sulfide (BBPS) in solution were investigated by time-resolved EPR and laser flash photolysis techniques. BBPS was shown to undergo photoinduced omega-bond cleavage to yield the p-benzoylbenzyl radical (BBR) and phenyl thiyl radical (PTR) at room temperature. The quantum yield (phi(rad)) for the radical formation was found to depend on the excitation wavelength, i.e., on the excitation to the excited singlet states, S2 and S1 of BBPS; phi(rad)(S2) = 0.65 and phi(rad)(S1) = 1.0. Based on the CIDEP data, these radicals were found to be produced via the triplet state independent of excitation wavelength. By using triplet sensitization of xanthone, the efficiency (alpha(rad)) of the C-S bond fission in the lowest triplet state (T1) of BBPS was determined to be unity. The agreement between phi(rad)(S1) and alpha(rad) values indicates that the C-S bond dissociation occurs in the T1 state via the S1 state due to a fast intersystem crossing from the S1 to the T1 state. In contrast, the wavelength dependence of the radical yields was interpreted in terms of the C-S bond cleavage in the S2 state competing with internal conversion from the S2 to the S1 state. The smaller value of phi(rad)(S2) than that of phi(rad)(S1) was proposed to originate from the geminate recombination of singlet radical pairs produced by the bond dissociation via the S2 state. Considering the electronic character of the excited and dissociative states in BBPS showed a schematic energy diagram for the omega-bond dissociation of BBPS.  相似文献   

3.
Density functional theory and CASSCF calculations have been used to determine equilibrium geometries and vibrational frequencies of metal-capped one-dimensional pi-conjugated complexes (H3P)Au(C[triple chemical bond]C)(n)(Ph) (n = 1-6), (H3P)Au(C[triple chemical bond]CC6H4)(C[triple chemical bond]CPh), and H3P--Au(C[triple chemical bond]CC6H4)C[triple chemical bond]CAu--PH3 in their ground states and selected low-lying pi(pi)* excited states. Vertical excitation energies for spin-allowed singlet-singlet and spin-forbidden singlet-triplet transitions determined by the time-dependent density functional theory show good agreement with available experimental observations. Calculations indicate that the lowest energy 3(pi(pi)*) excited state is unlikely populated by the direct electronic excitation, while the low-lying singlet and triplet states, slightly higher in energy than the lowest triplet state, are easily accessible by the excitation light used in experiments. A series of radiationless transitions among related excited states yield the lowest 3(pi(pi)*) state, which has enough long lifetimes to exhibit its photochemical reactivities.  相似文献   

4.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

5.
Photochemical properties of p-phenylphenacyl derivatives (PP-X) having C-halide, C-S, and C-O bonds in the lowest (T 1) and higher (T n ) triplet excited states were investigated in solution by using single-color and stepwise two-color two-laser flash photolysis techniques. PP-Xs (X = Br, SH, and SPh) undergo beta-bond dissociation in the lowest singlet excited states (S 1) while the C-X bonds of other PP-Xs are stable upon 266-nm laser photolysis. The T 1(pi,pi*) states of PP-X were efficiently produced during 355-nm laser photolysis of benzophenone as a triplet sensitizer. Triplet PP-Xs deactivate to the ground state without photochemical reactions. Upon 430-nm laser photolysis of the T 1 states of PP-X (X = Br, Cl, SH, SPh, OH, OMe, and OPh), decomposition of PP-X in the T n states was found. On the basis of the changes in the transient absorption, quantum yields (Phi dec) of the decomposition of PP-X in the T n states were determined, while bond dissociation energies (BDE) of the C-X bonds were calculated by computations. According to the relationship between the Phi dec and BDE values, it was shown that the decomposition of PP-X in the T n state is due to beta-cleavage of the corresponding C-X bond, and that the state energy of the reactive T n for the C-O bond cleavage differs from that for the C-halide and C-S bond cleavage. The reaction profiles of the C-X bond cleavage of PP-X in the T n states were discussed.  相似文献   

6.
Density functional theory and CASSCF calculations have been used to optimize the geometries of binuclear gold(I) complexes [H(3)PAu(C[triple bond]C)(n)AuPH(3)] (n=1-6) in their ground states and selected lowest energy (3)(pi pi*) excited states. Vertical excitation energies obtained by time-dependent density functional calculations for the spin-forbidden singlet-triplet transitions have exponential-decay size dependence. The predicted singlet-triplet splitting limit of [H(3)PAu(C[triple bond]C)(proportional/variant)AuPH(3)] is about 8317 cm(-1). Calculated singlet-triplet transition energies are in reasonable agreement with available experimental observations. The effect of the heavy atom Au spin-orbit coupling on the (3)(pi pi*) emission of these metal-capped one-dimensional carbon allotropes has been investigated by MRCI calculations. The contribution of the spin- and dipole-allowed singlet excited state to the spin-orbit-coupling wave function of the (3)(pi pi*) excited state makes the low-lying acetylenic triplet excited states become sufficiently allowed so as to appear in both electronic absorption and emission.  相似文献   

7.
Photochemical profiles of beta-bond dissociation in highly excited triplet states (Tn) of biphenyl derivatives having C-O bonds were investigated in solution, using stepwise laser photolysis techniques. The lowest triplet states (T1) were produced by triplet sensitization of acetone (Ac) upon 308-nm laser photolysis. The molar absorption coefficients of the T1 states were determined using triplet sensitization techniques. Any photochemical reactions were absent in the T1 states. Upon 355-nm laser flash photolysis of the T1 states, they underwent fragmentation, because of homolysis of the C-O bond in the Tn states from the observations of the transient absorption of the corresponding radicals. The quantum yields (Phidec) for the decomposition of the T1 states upon the second 355-nm laser excitation were determined. Based on the Phidec values and the bond dissociation energies (BDEs) for the C-O bond fission, the state energies (ERT) of the reactive highly excited triplet states (TR) were determined. It was revealed that (i) the Phidec was related to the energy difference (DeltaE) between the BDE and the ERT, and (ii) the rate (kdis) of beta-cleavage in the TR state was formulated as being simply proportional to DeltaE. The reaction mechanism for beta-bond cleavage in the TR states was discussed.  相似文献   

8.
The relevant excited states involved in the photolysis of methylcobalamin (MeCbl) have been examined by means of time-dependent density functional theory (TD-DFT). The low-lying singlet and triplet excited states have been calculated along the Co-C bond at the TD-DFT/BP86/6-31g(d) level of theory in order to investigate the dissociation process of MeCbl. These calculations have shown that the photodissociation is mediated by the repulsive 3(sigmaCo-C --> sigma*Co-C) triplet state. The key metastable photoproduct involved in Co-C bond photolysis was identified as an S1 state having predominantly dCo --> pi*corrin metal-ligand charge transfer (MLCT) character.  相似文献   

9.
Stepwise photocleavage of two naphthylmethyl-oxygen bonds of 1,8-bis[(4-benzoylphenoxy)methyl]naphthalene (1,8-(BPO-CH2)2Np, 1) was observed during three-color, three-laser flash photolysis at room temperature. The mechanism from 1 to the final product, acenaphthene (2), was clearly elucidated. The first (308 nm, 5 mJ pulse-1) XeCl laser excited 1 to the lowest triplet excited state 1(T1), in which the excited energy was localized in the naphthalene moiety, but the C-O bond cleavage did not occur. The second (430 nm, 7 mJ pulse-1) OPO laser excited 1(T1) to the higher triplet excited states 1(Tn) in which the excited energy is delocalized in the naphthalene moiety and C-O bonds, and one C-O bond cleavage occurred. The third (355 nm, 10 mJ pulse-1) YAG laser excited the carbon-centered radical in the ground state 1-(BPO-CH2)NpCH2*(D0) to its excited states 1-(BPO-CH2)NpCH2*(Dn), from which the second C-O bond cleavage occurred to give 2 as the final product. This is a successful example of stepwise cleavage of two equivalent C-O bonds in a molecule using three-color three-laser photolysis method.  相似文献   

10.
The C-O bond cleavage from benzophenone substituted with 4-CH2OR (p-BPCH2OR, 1-3), such as p-phenoxymethylbenzophenone (1, R= C6H5) and p-methoxymethylbenzophenone (2, R= CH3), occurred by a stepwise two-photon excitation during two-color, two-laser flash photolysis. On the other hand, no C-O bond cleavage occurred from p-hydroxymethylbenzophenone (3, R = H). The first 355-nm laser excitation of 1-3 generates p-BPCH2OR in the lowest triplet excited state (T1) which has an absorption at 532 nm. When p-BPCH2OR(T1) is excited with the second 532-nm laser to p-BPCH2OR in the higher triplet excited state (T(n)), the C-O bond cleavage occurred within the laser flash duration of 5 ns. The quantum yields of the C-O bond cleavage during the second 532-nm laser irradiation were found to be 0.015 +/- 0.007 and 0.007 +/- 0.003 for 1 and 2, respectively. Although these values are low, the diminishing 1(T1) or 2(T1) was found to convert, in almost 100% yield, to phenoxyl (C6H5O*) and p-benzoylbenzyl (BPCH2*) radicals or methoxyl (CH3O*) and BPCH2* radicals, respectively. The T(n) excitation energy, the energy barrier along the potential surface between the T(n) states and product radicals, and delocalization of the T(n) state molecular orbital including BP and CH2OR (R = C6H5, CH3, H) moieties are important factors for the occurrence of the C-O bond cleavage. It is found that the C-O bond cleavage and production of free radicals, such as BPCH2*, C6H5O*, and CH3O*, can be performed by a stepwise two-photon excitation. The present study is an example in which the chemical reactions can be selectively initiated from the T(n) state but not from the S1 and T1 states.  相似文献   

11.
Photolysis of 1 in chloroform yielded 2 as the major product and a small quantity of 3. Laser flash photolysis demonstrated that upon irradiation, the first excited triplet state of the ketone (T(1K)) of 1 is formed and decayed to form radical 4, which has a λ(max) at 380 nm (τ = 2 μs). Radical 4 expelled a nitrogen molecule to yield imine radical 5 (λ(max) at 300 nm). Density functional theory (DFT) calculations showed that the transition state barrier for the formation of 5 is approximately 4 kcal/mol. In comparison, photolysis of 1 in argon matrices resulted in triplet nitrene 6, which was further characterized with (15)N and D isotope labeling and DFT calculations. Prolonged irradiation of 6 yields triplet imine nitrene 7.  相似文献   

12.
To determine structure-optical property relationships in asymmetric platinum acetylide complexes, we synthesized the compounds trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-2), trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-3) and trans-Pt(PBu3)2(C[triple bond]C-C6H4-C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE2-3) that have different ligands on either side of the platinum and compared their spectroscopic properties to the symmetrical compounds PE1, PE2 and PE3. We measured ground state absorption, fluorescence, phosphorescence and triplet state absorption spectra and performed density functional theory (DFT) calculations of frontier orbitals, lowest lying singlet states, triplet state geometries and energies. The absorption and emission spectra give evidence the singlet exciton is delocalized across the central platinum atom. The phosphorescence from the asymmetric complexes comes from the largest ligand. Time-dependent (TD) DFT calculations show the S1 state has mostly highest occupied molecular orbital (HOMO) --> lowest unoccupied molecular orbital (LUMO) character, with the LUMO delocalized over the chromophore. In the asymmetric chromophores, the LUMO resides on the larger ligand, suggesting the S1 state has interligand charge transfer character. The triplet state geometries obtained from the DFT calculations show distortion on the lowest energy ligand, whereas the other ligand has the ground state geometry. The calculated trend in the triplet state energies agrees very well with the experimental trend. Calculations of triplet state spin density also show the triplet exciton is confined to one ligand. In the asymmetric complexes the spin density is confined to the largest ligand. The results show Kasha's rule applies to these complexes, where the triplet exciton moves to the lowest energy ligand.  相似文献   

13.
Photolysis of beta-azido propiophenone derivatives, 1, with built-in sensitizer units, leads to selective formation of triplet alkyl nitrenes 2 that were detected directly with laser flash photolysis (lambdamax = 325 nm, tau = 27 ms) and ESR spectroscopy (|D/hc| = 1.64 cm-1, |E/hc| = 0.004 cm-1). Nitrenes 2 were further characterized with argon matrix isolation, isotope labeling, and molecular modeling. The triplet alkyl nitrenes are persistent intermediates that do not abstract H-atoms from the solvent but do decay by dimerizing with another triplet nitrene to form azo products, rather than reacting with an azide precursor. The azo dimer tautomerizes and rearranges to form heterocyclic compound 3. Nitrene 2a, with an n,pi* configuration as the lowest triplet excited state of the its ketone sensitizer moiety, undergoes intramolecular 1,4-H-atom abstraction to form biradical 6, which was identified by argon matrix isolation, isotope labeling, and molecular modeling. beta-Azido-p-methoxy-propiophenone, with a pi,pi* lowest excited state of its triplet sensitizer moiety, does not undergo any secondary photoreactions but selectively yields only triplet alkyl nitrene intermediates that dimerize to form 3b.  相似文献   

14.
Photolysis of 3-azido-1,3-diphenyl-propan-1-one (1a) in toluene yields 1,3-diphenyl-propen-1-one (2), whereas irradiation of 3-azido-2,2-dimethyl-1,3-diphenyl-propan-1-one (1b) results in the formation of mainly 2,2-dimethyl-1,3-diphenyl-propan-1-one. Laser flash photolysis (308 nm) of 1a,b in acetonitrile reveals a transient absorption (lambda max = approximately 310 nm) due to the formation of radicals 4a and 4b, respectively, which have lifetimes of approximately 14 micros at ambient temperature. TD-DFT calculations (B3LYP/6-31+G(d)) reveal that the first and second excited states of the triplet ketone (T1K (n,pi*) and T2K (pi,pi*)) in azide 1a are almost degenerate, at approximately 74 and 76 kcal/mol above the ground state (S0), respectively. Similarly, azide 1b has T1K and T2K 75 and 82 kcal/mol above S0, respectively. The calculated transition state for cleaving the C-N bond is located 71 and 74 kcal/mol above S0 in azides 1a and 1b, respectively. The calculated bond dissociation energies for breaking the C-N bond are 55 and 58 kcal/mol for azides 1a and 1b, respectively, making C-N bond breakage accessible from T1K in azides 1 at ambient temperature. In comparison, the irradiation of azides 1 in argon matrices at 14 K lead to the formation of the corresponding triplet alkyl nitrenes (1-n), via intramolecular energy transfer from T2K. The characterization of 1-n was supported by isotope labeling, IR spectroscopy, and molecular modeling.  相似文献   

15.
The photophysical properties of a series of 1,8-naphthalimide photoacid generators were studied by steady state fluorescence and phosphorescence spectroscopy. Emission and excitation anisotropies, triplet quantum yields in polar and nonpolar solvent and photoacid generation were evaluated. The singlet excited state exhibits a low polarity and is strongly deactivated by an efficient intersystem crossing process. In protic solvent, a homolytic singlet cleavage of the N-O bond occurs and leads to the acid production. The existence of a triplet state close to the singlet state was clearly evidenced. The presence of close singlet excited states is supported by fluorescence anisotropy and picosecond laser spectroscopy experiments. Results of DFT calculations well confirm the experimental contentions and yield important information about the cleavage process involved in such compounds.  相似文献   

16.
The lowest absorption band of fac-[Re(Cl)(CO)3(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)3(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, 3MLCT, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the nu(CO) bands upon excitation (+70 cm(-1) for the A'1 band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state nu(CO) wavenumbers agree well with those calculated by DFT. The 3MLCT state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand 3npi excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a approximately 30 ps lifetime. The presence of an npi state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3MLCT states seen in all d6-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest 3MLCT states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the nu(CO) IR bands (-6 cm(-1) for A'1) but a large downward shift of the nu(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.  相似文献   

17.
The molecular structure of the tungsten-benzylidyne complex trans-W(≡CPh)(dppe)(2)Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d(xy))(2) ground state and luminescent triplet (d(xy))(1)(π*(WCPh))(1) excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W→P π-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d(xy))(1)-configured 1(+), and (d(xy))(2) [W(CPh)(dppe)(2)(NCMe)](+) (2(+)). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 ? in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M(≡E)L(n) (E = O, N) compounds with analogous (d(xy))(1)(π*(ME))(1) excited states is due to the π conjugation within the WCPh unit, which lessens the local W-C π-antibonding character of the π*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1(+), and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.  相似文献   

18.
Solutions of K[Au(CN)(2)] and K[Ag(CN)(2)] in water and methanol exhibit strong photoluminescence. Aqueous solutions of K[Au(CN)(2)] at ambient temperature exhibit luminescence at concentration levels of > or =10(-2) M, while frozen methanol glasses (77 K) exhibit strong luminescence with concentrations as low as 10(-5) M. The corresponding concentration limits for K[Ag(CN)(2)] solutions are 10(-1) M at ambient temperature and 10(-4) M at 77 K. Systematic variations in concentration, solvent, temperature, and excitation wavelength tune the luminescence energy of both K[Au(CN)(2)] and K[Ag(CN)(2)] solutions by >15 x 10(3) cm(-1) in the UV-visible region. The luminescence bands have been individually assigned to *[Au(CN)(2)(-)](n) and *[Ag(CN)(2)(-)](n) excimers and exciplexes that differ in "n" and geometry. The luminescence of Au(I) compounds is related for the first time to Au-Au bonded excimers and exciplexes similar to those reported earlier for Ag(I) compounds. Fully optimized unrestricted open-shell MP2 calculations for the lowest-energy triplet excited state of staggered [Au(CN)(2)(-)](2) show the formation of a Au-Au sigma single bond (2.66 A) in the triplet excimer, compared to a weaker ground-state aurophilic bond (2.96 A). The corresponding frequency calculations revealed Au-Au Raman-active stretching frequencies at 89.8 and 165.7 cm(-1) associated with the ground state and lowest triplet excited state, respectively. The experimental evidence of the exciplex assignment includes the extremely large Stokes shifts and the structureless feature of the luminescence bands, which suggest very distorted excited states. Extended Hückel (EH) calculations for [M(CN)(2)(-)](n) and *[M(CN)(2)(-)](n) models (M = Au, Ag; n = 2, 3) indicate the formation of M-M bonds in the first excited electronic states. From the average EH values for staggered dimers and trimers, the excited-state Au-Au and Ag-Ag bond energies are predicted to be 104 and 112 kJ/mol, respectively. The corresponding bond energies in the ground state are 32 and 25 kJ/mol, respectively.  相似文献   

19.
Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os(3)(CO)(10)(s-cis-L)] (L=cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os(3)(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1 a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient 1 a, a second CO bridge is formed in 20 ps in the photoproduct [Os(3)(CO)(8)(micro-CO)(2)(cyclohexa-1,3-diene)] (1 b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1 b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.  相似文献   

20.
Two methylated thienocarbazoles and two of their synthetic nitro-precursors have been examined by absorption, luminescence, laser flash photolysis and photoacoustic techniques. Their spectroscopic and photophysical characterization involves fluorescence spectra, fluorescence quantum yields and lifetimes, and phosphorescence spectra and phosphorescence lifetimes for all the compounds. Triplet-singlet difference absorption spectra, triplet molar absorption coefficients, triplet lifetimes, intersystem crossing S1 --> T1 and singlet molecular oxygen yields were obtained for the thienocarbazoles. In the case of the thienocarbazoles it was found that the lowest-lying singlet and triplet excited states, S1 and T1, are of pi,pi* origin, whereas for their precursors S1 is n,pi*, and T1 is pi,pi*. In both thienocarbazoles it appears that the thianaphthene ring dictates the S1 --> T1 yield, albeit there is less predominance of that ring in the triplet state of the linear thienocarbazole, which leads to a decrease in the observed phiT value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号