首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using photoelectron spectroscopy, we interrogate the cyclic furanide anion (C(4)H(3)O(-)) to determine the electron affinity and vibrational structure of the neutral furanyl radical and the term energy of its first excited electronic state. We present the 364-nm photoelectron spectrum of the furanide anion and measure the electron affinity of the X?(2)A(') ground state of the α-furanyl radical to be 1.853(4) eV. A Franck-Condon analysis of the well-resolved spectrum allows determination of the harmonic frequencies of three of the most active vibrational modes upon X?(2)A(') ← X?(1)A(') photodetachment: 855(25), 1064(25), and 1307(40) cm(-1). These modes are ring deformation vibrations, consistent with the intuitive picture of furanide anion photodetachment, where the excess electron is strongly localized on the α-carbon atom. In addition, the A?(2)A(') excited state of the α-furanyl radical is observed 0.68(7) eV higher in energy than the X?(2)A(') ground state. Through a thermochemical cycle involving the known gas-phase acidity of furan, the electron affinity of the furanyl radical yields the first experimental determination of the C-H(α) bond dissociation energy of furan (DH(298)(C(4)H(3)O-H(α))): 119.8(2) kcal mol(-1).  相似文献   

2.
We report photoelectron images and spectra of deprotonated thiophene, C(4)H(3)S(-), obtained at 266, 355, and 390 nm. Photodetachment of the α isomer of the anion is observed, and the photoelectron bands are assigned to the ground X(2)A(') (σ) and excited A(2)A(") and B(2)A(") (π) states of the thiophenyl radical. The photoelectron angular distributions are consistent with photodetachment from the respective in-plane (σ) and out-of-plane (π(?)) orbitals. The adiabatic electron affinity of α-(●)C(4)H(3)S is determined to be 2.05 ± 0.08 eV, while the B(2)A(") term energy is estimated at 1.6 ± 0.1 eV. Using the measured electron affinity and the electron affinity/acidity thermodynamic cycle, the C-H(α) bond dissociation energy of thiophene is calculated as DH(298)(H(α)-C(4)H(3)S) = 115 ± 3 kcal/mol. Comparison of this value to other, previously reported C-H bond dissociation energies, in particular for benzene and furan, sheds light of the relative thermodynamic stabilities of the corresponding radicals. In addition, the 266 nm photoelectron image and spectrum of the furanide anion, C(4)H(3)O(-), reveal a previously unobserved vibrationally resolved band, assigned to the B(2)A(") excited state of the furanyl radical, (●)C(4)H(3)O. The observed band origin corresponds to a 2.53 ± 0.01 eV B(2)A(") term energy, while the resolved vibrational progression (853 ± 42 cm(-1)) is assigned to an in-plane ring mode of α-(●)C(4)H(3)O (B(2)A(")).  相似文献   

3.
Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T–H] or N3[T–H]. Here we report a photodetachment study of the N1[T–H] isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 cm–1 below the detachment threshold of N1[T–H]. The electron affinity of the deprotonated thymine radical (N1[T–H]˙) is measured accurately to be 26 322 ± 5 cm–1 (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck–Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T–H]˙ radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 cm–1 and 92 ± 5 cm–1.  相似文献   

4.
Anion photoelectron spectra of Ga(2)N(-) were measured at photodetachment wavelengths of 416 nm(2.978 eV), 355 nm(3.493 eV), and 266 nm(4.661 eV). Both field-free time-of-flight and velocity-map imaging methods were used to collect the data. The field-free time-of-flight data provided better resolution of the features, while the velocity-map-imaging data provided more accurate anisotropy parameters for the peaks. Transitions from the ground electronic state of the anion to two electronic states of the neutral were observed and analyzed with the aid of electronic structure calculations and Franck-Condon simulations. The ground-state band was assigned to a transition between linear ground states of Ga(2)N(-)(X (1)Sigma(g) (+)) and Ga(2)N(X (2)Sigma(u) (+)), yielding the electron affinity of Ga(2)N, 2.506+/-0.008 eV. Vibrationally resolved features in the ground-state band were assigned to symmetric and antisymmetric stretch modes of Ga(2)N, with the latter allowed by vibronic coupling to an excited electronic state. The energy of the observed excited neutral state agrees with that calculated for the A (2)Pi(u) state, but the congested nature of this band in the photoelectron spectrum is more consistent with a transition to a bent neutral state.  相似文献   

5.
The 351.1 nm photoelectron spectrum of imidazolide anion has been measured. The electron affinity (EA) of the imidazolyl radical is determined to be 2.613 +/- 0.006 eV. Vibrational frequencies of 955 +/- 15 and 1365 +/- 20 cm(-1) are observed in the spectrum of the (2)B1 ground state of the imidazolyl radical. The main features in the spectrum are well-reproduced by Franck-Condon simulation based on the optimized geometries and the normal modes obtained at the B3LYP/6-311++G(d,p) level of density functional theory. The two vibrational frequencies are assigned to totally symmetric modes with C-C and N-C stretching motions. Overtone peaks of an in-plane nontotally symmetric mode are observed in the spectrum and attributed to Fermi resonance. Also observed is the photoelectron spectrum of the anion formed by deprotonation of imidazole at the C5 position. The EA of the corresponding radical, 5-imidazolyl, is 1.992 +/- 0.010 eV. The gas phase acidity of imidazole has been determined using a flowing afterglow-selected ion tube; delta(acid)G298 = 342.6 +/- 0.4 and delta(acid)H298 = 349.7 +/- 0.5 kcal mol(-1). From the EA of imidazolyl radical and gas phase acidity of imidazole, the bond dissociation energy for the N-H bond in imidazole is determined to be 95.1 +/- 0.5 kcal mol(-1). These thermodynamic parameters for imidazole and imidazolyl radical are compared with those for pyrrole and pyrrolyl radical, and the effects of the additional N atom in the five-membered ring are discussed.  相似文献   

6.
High resolution anion photodetachment spectra are presented for the methoxide anion and its fully deuterated counterpart. The spectra were obtained with slow electron velocity-map imaging. Improved electron affinities are determined for CH3O as 1.5690+/-0.0019 eV and for CD3O as 1.5546+/-0.0019 eV. The spectra resolve many features associated with spin-orbit and vibronic coupling that were not seen in previous photodetachment studies. Photoelectron angular distributions taken as a function of detachment wavelength for the ground vibronic state transitions are recorded and are consistent with the removal of a nonbonding, p-type electron localized on the oxygen atom. Several hot bands and sequence bands are observed for the first time, providing insight into the vibrational structure of the methoxide anion. The results are compared to recent calculations of the anion photoelectron spectra that incorporate bilinear coupling terms among the methoxy vibrational modes and are found to be in reasonable agreement.  相似文献   

7.
The primary structure of 3'-imino[60]fulleryl-3'-deoxythymidine ions is studied using mass spectrometry both in the positive and negative modes. Interaction between the subunits is discussed using collision-induced dissociation (CID) spectra. Collisional activation with argon of the sodiated cations leads to the cleavage of the glycosidic bond and the transfer of a radical hydrogen from the deoxyribose to the thymine. The sodiated thymine is the only fragment observed for low collision energies in the positive mode. In the negative mode, two different ionization mechanisms take place, reduction and deprotonation in the presence of triethylamine. The 2.7 eV electron affinity of C60 and its huge cross section compared to the small cross section and predicted 0.44 eV electron affinity of the thymidine subunit most likely localize the radical electron on the fullerene. On the other hand, deprotonation of the 3'-azido-3'-deoxythymidine (AZT) is known to occur in N-3, the most acidic site of the nucleobase. Consequently, deprotonation causes the negative charge to be initially localized on the thymine. Both types of parent anions give the radical anion C60*- as fragment. The other fragments detected are the dehydrogenated 3'-imino[60]fulleryl-3'-deoxyribose anion, C60NH2-, C60N- and C60H-. Since in negative ion mass spectrometry all fragments include the [60]fullerene unit, this suggests that the fragmentation is driven by the electron affinity of the [60]fullerene, likely responsible for a charge transfer between the deprotonated thymine and the C60.  相似文献   

8.
The mass-resolved anionic products of the reaction of O(?-) with acetaldehyde, H(3)CCHO, are studied using photoelectron imaging. The primary anionic products are vinoxide, H(2)CCHO(-), formylmethylene anion, HCCHO(?-), and ketenylidene anion, CCO(?-). From photoelectron spectra of HCCHO(?-), the electron affinity of triplet (ground state) formylmethylene (1.87 ± 0.02 eV) and the vertical detachment energy corresponding to the first excited triplet state (3.05 eV) are determined, but no unambiguous assignment for singlet HCCHO could be made. The elusive singlet is a key intermediate in the Wolff rearrangement, resulting in formation of ketene. The fast rearrangement associated with a large geometry change upon photodetachment to the singlet surface may be responsible for the low intensity of the singlet compared to the triplet bands in the photoelectron spectrum. The title reaction also yields CCO(?-), whose formation from acetaldehyde is novel and intriguing, since it requires a multistep net-H(4)(+) abstraction. A possible mechanism is proposed, involving an [H(2)CCO(?-)]* intermediate. From the measured electron affinities of HCCHO (above), H(2)CCHO (1.82 ± 0.01 eV), and CCO (2.31 ± 0.01 eV), several new thermochemical properties are determined, including the C-H bond dissociation energies and heats of formation of several organic molecules and/or their anions. Overall, the reactivity of O(?-) with organic molecules demonstrates the utility of this anion in the formation of a variety of reactive intermediates via a single process.  相似文献   

9.
We report a photoelectron spectroscopy and computational study of two simple boron oxide species: BO- and BO2-. Vibrationally resolved photoelectron spectra are obtained at several photon energies (355, 266, 193, and 157 nm) for the 10B isotopomers, 10BO- and 10BO2-. In the spectra of 10BO-, we observe transitions to the 2Sigma+ ground state and the 2Pi excited state of 10BO at an excitation energy of 2.96 eV. The electron affinity of 10BO is measured to be 2.510+/-0.015 eV. The vibrational frequencies of the ground states of 10BO- and 10BO and the 2Pi excited state are measured to be 1725+/-40, 1935+/-30, and 1320+/-40 cm-1, respectively. For 10BO2-, we observe transitions to the 2Pig ground state and two excited states of 10BO2, 2Piu, and 2Sigmau+, at excitation energies of 2.26 and 3.04 eV, respectively. The electron affinity of 10BO2 is measured to be 4.46+/-0.03 eV and the symmetrical stretching vibrational frequency of the 2Piu excited state of 10BO2 is measured to be 980+/-30 cm-1. Both density functional and ab initio calculations are performed to elucidate the electronic structure and chemical bonding of the two boron oxide molecules. Comparisons with the isoelectronic AlO- and AlO2- species and the closely related molecules CO, N2, CN-, and CO2 are also discussed.  相似文献   

10.
We report the 364-nm photoelectron spectrum of HC(4)N(-). We observe electron photodetachment from the bent X(2)A" state of HC(4)N(-) to both the near-linear X(3)A" and the bent ? (1)A' states of neutral HC(4)N. We observe an extended, unresolved vibrational progression corresponding to X(3)A" ← X(2)A" photodetachment, and we measure the electron affinity (EA) of the X(3)A" state of HC(4)N to be 2.05(8) eV. Photodetachment to the bent ? (1)A' state results in a single intense origin peak at a binding energy of 2.809(4) eV, from which we determine the singlet-triplet splitting (ΔE(ST)) of HC(4)N: 0.76(8) eV. For comparison and to aid in the interpretation of the HC(4)N(-) spectrum, we also report the 364-nm photoelectron spectra of HCCN(-) and DCCN(-). Improved signal-to-noise over the previous HCCN(-) and DCCN(-) photoelectron spectra allows for a more precise determination of the EAs and ΔE(ST)s of HCCN and DCCN. The EAs of HCCN and DCCN are measured to be 2.001(15) eV and 1.998(15) eV, respectively; ΔE(ST)(HCCN) is 0.510(15) eV and ΔE(ST)(DCCN) is 0.508(15) eV. These results are discussed in the context of other organic carbene chains.  相似文献   

11.
High resolution photoelectron spectra of the n-methylvinoxide anion and its deuterated isotopologue are obtained by slow electron velocity-map imaging. Transitions between the X?(1)A' anion ground electronic state and the radical X?(2)A" and A?(2)A' states are observed. The major features in the spectra are attributed to transitions involving the lower energy cis conformers of the anion and neutral, while the higher energy trans conformers contribute only a single small peak. Franck-Condon simulations of the X?(2)A" ← X?(1)A' and A?(2)A' ← X?(1)A' transitions are performed to assign vibrational structure in the spectrum and to aid in identifying peaks in the cis-n-methylvinoxy X? (2)A" band that occur only through vibronic coupling. The experimental electron affinity and A? state term energy are found to be EA = 1.6106 ± 0.0008 eV and T(0) = 1.167 ± 0.002 eV for cis-n-methylvinoxy.  相似文献   

12.
We have observed and characterized two new double Rydberg anions N6H19- and N7H22- through their anion photoelectron spectra. The vertical detachment energies of these anions were found to be 0.443 and 0.438 eV, respectively. In addition, for three of the seven double Rydberg anions now known, we measured photodetachment transitions not only to the ground electronic states of their corresponding neutral Rydberg radicals but also to their first electronically excited states. In each spectrum, the energy spacing between the resulting peaks provided the ground-to-first electronically excited-state transition energy for the double Rydberg anion's corresponding neutral Rydberg radical. For the radicals, N4H13, N5H16, and N6H19, the spacings were found to be 0.83, 0.70, and 0.67 eV, respectively. These values are in excellent agreement with ground-to-first excited-state transition energies measured in absorption for the same neutral Rydberg radicals by Fuke and co-workers [Eur. Phys. J. D 9, 309 (1999); J. Phys. Chem. A 106, 5242 (2002).] The duplication of this neutral Rydberg property by photodetachment of double Rydberg anions further confirms that double Rydberg anions are indeed the negative ions of their corresponding neutral Rydberg molecules and cluster-like systems.  相似文献   

13.
The 351.1 nm photoelectron spectrum of the vinyldiazomethyl anion has been measured. The ion is generated through the reaction of the allyl anion with N(2)O in helium buffer gas in a flowing afterglow source. The spectrum exhibits the vibronic structure of the vinyldiazomethyl radical in its electronic ground state as well as in the first excited state. Electronic structure calculations have been performed for these molecules at the B3LYP/6-311++G(d,p) level of theory. A Franck-Condon simulation of the X (2)A' state portion of the spectrum has been carried out using the geometries and normal modes of the anion and radical obtained from these calculations. The simulation unambiguously shows that the ions predominantly have an E conformation. The electron affinity (EA) of the radical has been determined to be 1.864 +/- 0.007 eV. Vibrational frequencies of 185 +/- 10 and 415 +/- 20 cm(-1) observed in the spectrum have been identified as in-plane CCN bending and CCC bending modes, respectively, for the X (2)A' state. The spectrum for the A (2)A' state is broad and structureless, reflecting large geometry differences between the anion and the radical, particularly in the CCN angle, as well as vibronic coupling with the X (2)A' state. The DFT calculations have also been used to better understand the mechanism of the allyl anion reaction with N(2)O. Collision-induced dissociation of the structural isomer of the vinyldiazomethyl anion, the 1-pyrazolide ion, has been examined, and energetics of the structural isomers is discussed.  相似文献   

14.
The electron capture detector, reduction potential, electron transfer and photon methods of determining electron affinities are compared. The adiabatic electron affinities are (in eV): t-azobenzene(O2), 1.578(5); t-azobenzene, 1.378(5); cytosine, 1.043(5) from anion photoelectron spectra. The largest or ground state value for trans-azobenzene and an excited state electron affinity for cytosine, 0.70 eV are also determined by reduction potentials. Other excited state energies are (in eV): t-azobenzene, 0.328(5), 0.589(5), 0.690(5), 0.768(5), 0.954(5), 1.038(5), 1.150(5), 1.275(5) and cytosine, 0.089(5), 0.098(5), 0.198(5), 0.235(5). The cytosine values are consistent with electron transport and radiation damage and repair in DNA.  相似文献   

15.
Anion photoelectron spectra of the O(2)(-) . arene and O(4)(-) . arene complexes with p-xylene and p-difluorobenzene are presented and analyzed with the aid of calculations on the anions and corresponding neutrals. Relative to the adiabatic electron affinity of O(2), the O(2)(-) . arene spectra are blueshifted by 0.75-1 eV. Solvation energy alone does not account for this shift, and it is proposed that a repulsive portion of the neutral potential energy surface is accessed in the detachment, resulting in dissociative photodetachment. O(2)(-) is found to interact more strongly with the p-difluorobenzene than the p-xylene. The binding motif involves the O(2)(-) in plane with the arene, interacting via electron donation along nearby C-H bonds. A peak found at 4.36(2) eV in the photoelectron spectrum of O(2)(-) . p-difluorobenzene (p-DFB) is tentatively attributed to the charge transfer state, O(2)(-) . p-DFB(+). Spectra of O(4)(-) . arene complexes show less blueshift in electron binding energy relative to the spectrum of bare O(4)(-), which itself undergoes dissociative photodetachment. The striking similarity between the profiles of the O(4)(-) . arene complexes with the O(4)(-) spectrum suggests that the O(4)(-) molecule remains intact upon complex formation, and delocalization of the charge across the O(4)(-) molecule results in similar structures for the anion and neutral complexes.  相似文献   

16.
The photoelectron spectrum of ZrSi(-) has been measured at two different photon energies: 2.33 eV and 3.49 eV, providing electron binding energy and photoelectron angular distribution information. The obtained vertical detachment energy of ZrSi(-) is 1.584(14) eV. The neutral ground and excited state terms are assigned based on experimental and theoretical results. The ground state of ZrSi is tentatively assigned as a (3)Σ(+) state with a configuration of 1σ(2) 1π(4) 1δ(0) 2σ(1) 3σ(1). A low lying (3)Π(i) neutral excited state is identified to be 0.238 eV (1919 cm(-1)) above the ground state. The anion ground state is designated as a (2)Σ(+) state with a 1σ(2) 1π(4) 1δ(0) 2σ(2) 3σ(1) valence electron configuration. A Franck-Condon (FC) simulation of the photoelectron spectrum has been carried out. For the (3)Σ(+) ← (2)Σ(+) band, theoretically calculated bond lengths and frequencies are used in the FC calculation which give good agreement with experiment, while for the (3)Π(i) ← (2)Σ(+) band, the ZrSi bond length is estimated from the FC spectrum. Comparisons are made with previously published theoretical studies and inconsistencies are pointed out. To the best of our knowledge, this study provides the first spectroscopic information on the transition metal-silicon diatomic, ZrSi.  相似文献   

17.
We report the 364-nm negative ion photoelectron spectra of CHX(2)(-) and CDX(2)(-), where X = Cl, Br, and I. The pyramidal dihalomethyl anions undergo a large geometry change upon electron photodetachment to become nearly planar, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce qualitatively the experimental data using physically reasonable parameters. Specifically, the harmonic normal mode analysis using Cartesian displacement coordinates results in much more C-H stretch excitation than is observed, leading to a simulated photoelectron spectrum that is much broader than that which is seen experimentally. A (2 + 1)-dimensional anharmonic coupled-mode analysis much better reproduces the observed vibrational structure. We obtain an estimate of the adiabatic electron affinity of each dihalomethyl radical studied. The electron affinity of CHCl(2) and CDCl(2) is 1.3(2) eV, of CHBr(2) and CDBr(2) is 1.9(2) eV, and of CHI(2) and CDI(2) is 1.9(2) eV. Analysis of the experimental spectra illustrates the limits of the conventional normal mode approach and shows the type of analysis required for substantial geometry changes when multiple modes are active upon photodetachment.  相似文献   

18.
We present low-energy velocity map photoelectron imaging results for bare and Ar solvated nitroethane anions. We report an improved value for the adiabatic electron affinity of nitroethane of (191 ± 6) meV which is used to obtain a C-NO(2) bond dissociation energy of (0.589 ± 0.019) eV in nitroethane anion. We assign a weak feature at (27 ± 5) meV electron binding energy to the dipole-bound anion state of nitroethane. Photoelectron angular distributions exhibit increasing anisotropy with increasing kinetic energies. The main contributions to the photoelectron spectrum of nitroethane anion can be assigned to the vibrational modes of the nitro group. Transitions involving torsional motion around the CN bond axis lead to strong spectral congestion. Interpretation of the photoelectron spectrum is assisted by ab initio calculations and Franck-Condon simulations.  相似文献   

19.
Negative ion photoelectron spectroscopy was employed to investigate the electronic structure of the acridine molecular anion and its monohydrated anion in the gas phase. Their adiabatic electron affinities were measured to be 0.896+/-0.010 and 1.18+/-0.05 eV, and the low-lying electronic excited states in both neutral acridine and in its monohydrate were revealed. The photoelectron spectra clearly exhibit the presence of low-lying singlet and triplet states having a (pi,pi*) configuration in an uncomplexed acridine molecule. Comparison of the photoelectron spectrum of acridine with that of anthracene shows that photodetachment processes into the excited states of (n,pi*) configuration have little intensity, implying a relatively large intramolecular structural relaxation in the (n,pi*) states.  相似文献   

20.
Anion photoelectron spectroscopy is performed on the C(5)H(-) species. Analogous to C(3)H(-) and C(3)D(-), photodetachment transitions are observed from multiple, energetically close-lying isomers of the anion. A linear and a cyclic structure are found to have electron binding energies of 2.421+/-0.019 eV and 2.857+/-0.028 eV, respectively. A cyclic excited state is also found to be 1.136 eV above the linear (2)Pi C(5)H ground state. Based on our assignments of the observed transitions and previous calculations on the energetics of neutral C(5)H isomers, the cyclic (1)A(1) anion state is found to lie 0.163 eV below the (3)A linear anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号