首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Au(3+) percentage in Au/TiO(2) on its storage stability at room temperature was studied by varying the drying temperature and storage duration of a deposition-precipitation prepared Au/TiO(2) sample. Carefully-designed room temperature storage in a desiccator, in the dark to exclude any interference of light irradiation, was referenced to the freezing storage (255 K) in a refrigerator. The samples were characterized by well-calibrated H(2)-TPR, TEM and TG measurements. Reduction of Au(3+) ions and agglomeration of metallic Au particles were shown to be the main reasons for the deterioration of Au/TiO(2) during desiccator-storage. Correlating the percentage of Au(3+) ions, determined by H(2)-TPR, with the storage stability of Au/TiO(2) for CO oxidation at 273 K revealed that Au/TiO(2) samples with higher Au(3+) percentages (>90%) were much more stable during the desiccator-storage than those with higher percentages of metallic Au. Residual water in fresh Au/TiO(2) before storage showed a promotional effect on gold reduction and agglomeration during storage. By maximizing the percentage of Au(3+) ions and minimizing the residual water in the fresh sample, the deterioration of the Au/TiO(2) catalyst was successfully avoided during desiccator-storage of up to 150 days in dark. A possible mechanism of Au/TiO(2) deterioration during the desiccator-storage was also discussed.  相似文献   

2.
TiO(2)-supported gold nanoparticles exhibit surprising catalytic activity for oxidation reactions compared to noble bulk gold which is inactive. The catalytic activity is localized at the perimeter of the Au nanoparticles where Au atoms are atomically adjacent to the TiO(2) support. At these dual-catalytic sites an oxygen molecule is efficiently activated through chemical bonding to both Au and Ti(4+) sites. A significant inhibition by a factor of 22 in the CO oxidation reaction rate is observed at 120 K when the Au is preoxidized, caused by the oxygen-induced positive charge produced on the perimeter Au atoms. Theoretical calculations indicate that induced positive charge occurs in the Au atoms which are adjacent to chemisorbed oxygen atoms, almost doubling the activation energy for CO oxidation at the dual-catalytic sites in agreement with experiments. This is an example of self-inhibition in catalysis by a reactant species.  相似文献   

3.
The IR spectra that characterize La(2)O(3)-supported gold clusters show that the original Au(0) species can be oxidized by CO(2) during the catalytic CO oxidation reaction, indicating that CO(2) is the actual gold oxidizing agent.  相似文献   

4.
Prolonged exposure to X-rays of HAuCl(4) deposited from an aqueous solution onto a SiO(2)/Si substrate or into a poly(methyl methacrylate) (PMMA) matrix induces reduction of the Au(3+) ions to Au(0) and subsequent nucleation to gold nanoclusters as recorded by X-ray photoelectron spectroscopy. The corresponding major oxidation product is determined as chlorine {HAuCl(4)(ads) + X-rays --> Au(ads) + (3/2)Cl(2)(ads) + HCl(ads)}, which is initially adsorbed onto the surface but eventually diffuses out of the system into the vacuum. The reduced gold atoms aggregate (three-dimensionally) into gold nanoclusters as evidenced by the variation in the binding energy during X-ray exposure, which starts as 1.3 eV but approaches a value that is 0.5 eV higher than that of the bulk gold. The disappearance of the oxidation product (Cl2p signal) and the growth of the nanoclusters (related to the measured binding energy difference between the Si2p of the oxide and Au4f of the reduced gold) exhibit first-order kinetics which is approximately 3 times slower than the reduction of Au(3+), indicating that both of the former processes are diffusion controlled. Similarly, gold ions incorporated into PMMA can also be reduced and aggregated to gold nanoclusters using 254 nm deep UV irradiation in air evidenced by UV-vis-NIR absorption spectrocopy.  相似文献   

5.
X-Ray absorption spectra show that a CeO(2)-supported CO oxidation catalyst prepared from Au(III)(CH(3))(2)(C(5)H(7)O(2)) initially incorporated Au(III) complexes that were catalytically active at 353 K; during operation in a flow reactor, the gold aggregated into clusters and the catalytic activity increased.  相似文献   

6.
Colloidal synthesis of metal-semiconductor hybrid nanostructures is mainly achieved in organic solution. In some applications of hybrid nanoparticles relevant in aqueous media, phase transfer of hydrophobic metal-semiconductor hybrid nanostructures is essential. In this work, we present a simple method for direct synthesis of water-soluble gold (Au) decorated Te@CdTe hybrid nanorods (NRs) at room temperature by using aqueous Te@CdTe NRs as templates, which were preformed by using CdTe nanocrystals (NCs) as precursor in the presence of hydrazine hydrate (N(2)H(4)). Our results showed that NRs were decorated with Au islands both on tips and along the surface of the NRs. The size and density of Au islands can be controlled by varying the amount of Au precursor (mixture of HAuCl(4) and thioglycolic acid (TGA)) and TGA/HAuCl(4) ratio. A possible growth mechanism for the Au decoration of Te@CdTe NRs is concluded as three steps: (1) the formation of AuTe(1.7) via the substitution reaction of Cd(2+) by Au(3+), (2) adsorption of Au-TGA complex onto the preformed AuTe(1.7) anchors and following reduction by CdTe and N(2)H(4), leading to the formation of small Au NCs, (3) Au NCs grow to bigger ones, followed by reduction of more Au precursor by N(2)H(4).  相似文献   

7.
We propose a general nucleation and growth model that can explain the mechanism of the formation of CoPt(3)/Au, FePt/Au, and Pt/Au nanodumbbells. Thus, we found that the nucleation event occurs as a result of reduction of Au(+) ions by partially oxidized surface Pt atoms. In cases when Au(3+) is used as a gold precursor, the surface of seeds should be terminated by ions (e.g., Co(2+), Pb(2+)) that can reduce Au(3+) to Au(+) ions, which can further participate in the nucleation of gold domain. Further growth of gold domain is a result of reduction of both Au(3+) and Au(+) by HDA at the surface of gold nuclei. We explain the different ability of CoPt(3), Pt, and FePt seeds to serve as a nucleation center for the reduction of gold and further growth of dumbbells. We report that the efficiency and reproducibility of the formation of CoPt(3)/Au, FePt/Au, and Pt/Au dumbbells can be optimized by the concentration and oxidation states of the surface ions on metallic nanocrystals used as seeds as well as by the type of the gold precursor.  相似文献   

8.
Adsorption of CO on gold supported in zeolite NaY at 85 K led to the formation of (i) various carbonyls and isocarbonyls typical of the zeolite and (ii) carbonyls formed at cationic gold sites (observed in the 2186-2171 cm(-1) region). Analysis of the behavior of the bands allows their assignment to carbonyls of Au(3+) ions. At temperatures higher than 220 K, CO adsorption led to the formation of a new type of Au(3+)-CO species (2207 cm(-1)). Once formed, these complexes could be transformed into the dicarbonyls Au(3+)(CO)(2) when the sample was cooled to 85 K in the presence of CO. The results are explained by migration of Au(3+) ions to more accessible positions within the zeolite at increasing temperatures. When a CO molecule is already adsorbed, it stabilizes the Au(3+) ion in the new position, and a second CO molecule can be coordinated, thus forming a geminal species. These results are the first evidence of Au(3+)(CO)(2) complexes.  相似文献   

9.
Synchrotron-based high-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of gold with titania and the chemistry of SO(2) on Au/TiO(2)(110) surfaces. The deposition of Au nanoparticles on TiO(2)(110) produces a system with an extraordinary ability to adsorb and dissociate SO(2). In this respect, Au/TiO(2) is much more chemically active than metallic gold or stoichiometric titania. On Au(111) and rough polycrystalline surfaces of gold, SO(2) bonds weakly and desorbs intact at temperatures below 200 K. For the adsorption of SO(2) on TiO(2)(110) at 300 K, SO(4) is the only product (SO(2) + O(oxide) --> SO(4,ads)). In contrast, Au/TiO(2)(110) surfaces (theta;(Au) < or = 0.5 ML) fully dissociate the SO(2) molecule under identical reaction conditions. Interactions with titania electronically perturb gold, making it more chemically active. Furthermore, our experimental and theoretical results show quite clearly that not only gold is perturbed when gold and titania interact. The adsorbed gold, on its part, enhances the reactivity of titania by facilitating the migration of O vacancies from the bulk to the surface of the oxide. In general, the complex coupling of these phenomena must be taken into consideration when trying to explain the unusual chemical and catalytic activity of Au/TiO(2). In many situations, the oxide support can be much more than a simple spectator.  相似文献   

10.
Gamma-Al2O3, ZrO2, and TiO2 gold supported model catalysts have been synthesized by laser vaporization. Structural characterization using Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy experiments have shown that the gold clusters deposited on the different supports have similar distribution of size centered around 3 nm and are in the metallic state. However, X-ray photoemission measurements also indicate lower binding energies than the usual Au 4f(7/2) at 84.0 eV for both alumina and titania supported catalysts, indicating a modification of the electronic structure of the metal. One has taken benefit of these features to study the influence of the nature of the support toward CO oxidation activities without being hindered by particle size or gold oxidic species effects. By comparing the activities of the different catalysts, it is concluded that the nature of the support directly affects the activity of gold. The following tendency is observed: titania and zirconia are superior to alumina as supports, titania being slightly better than zirconia. From XPS and activity results we can conclude that the existence of negatively charged clusters is not the key point to explain the high activity observed for Au/ZrO2 and Au/TiO2 catalysts and also that metallic Au is the major catalytically active phase. Hence, due to their very nature, titania and to a less extent zirconia should participate to the catalytic process.  相似文献   

11.
Pure gold clusters (Aun+) were produced up to the cluster size of n = 100 by matrix-assisted laser desorption/ionization (MALDI). The mass spectrum of the resulting clusters showed alteration in the ion intensity at odd-even clusters size. On the other hand, intensity drops at cluster size predicted by the jellium model theory was also observed. Positively and negatively charged bimetallic silver-gold clusters were produced under MALDI conditions from the mixture of HAuCl4/silver trifluoroacetate and the 2-(4-hydroxyphenylazo)benzoic acid (HABA) matrix. A linear correlation was found between the intensity ratio of AunAgm+ to Au(n+1)Ag(m-1)+ cluster ions and the molar ratio of the gold to silver salt. It was observed that the composition and the distribution of the clusters can be varied with the molar ratio of the silver and gold salts. It was also found that the resulting cluster sizes obey the lognormal distribution.  相似文献   

12.
利用X射线吸收谱技术研究了负载于多壁碳纳米管内的Rh-Mn纳米粒子在不同气氛和温度下的结构. 结果表明,Rh-Mn粒子在空气中是由氧化铑团簇和混合锰氧化物组成. 经过氢气在300 ℃下还原后,混合锰氧化物种转化成MnO. 而氧化铑团簇在He气氛下当温度达到250 ℃时就会发生分解而形成金属铑团簇. 对形成的铑团簇用H2或CO进行热处理,发现其分散性随温度升高而提高; 同时,X射线吸收谱实验没有观察到Mn和Rh之间存在显著的相互作用,助剂Mn的主要作用是提高了Rh的分散性.  相似文献   

13.
在分子尺度上介绍了Au/TiO2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H2O的作用.在低温(<320 K), H2O起着促进CO氧化的作用, CO氧化的活性位位于金纳米颗粒与TiO2载体界面(Auδ+–Oδ––Ti)的周边. O2和H2O在金纳米颗粒与TiO2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO2.300 K时CO2的形成速率受限于O2压力与该反应机理相印证.相反,在高温(>320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O2,随后O2解离,并在金属金表面氧化CO.  相似文献   

14.
The sunlight-induced photocatalytic oxidation of aqueous benzene on TiO(2)-supported gold nanoparticles was considerably improved when the reaction was conducted under a CO(2) atmosphere. 13% yield and 89% selectivity of phenol was obtained on P25-supported gold nanoparticles under 230 kPa of CO(2).  相似文献   

15.
HAuCl(4) in aqueous solution was extracted to toluene or chloroform using a hydrophobically modified poly(amidoamine) dendrimer. Then, by reduction of Au(3+) ions with dimethylamineborane, gold nanoparticles in the size range of 2-4 nm were obtained in toluene or chloroform. It is suggested that gold nanoparticles are encapsulated by the dendrimer. Copyright 2000 Academic Press.  相似文献   

16.
Au改性纳米TiO2材料对NPE-10光催化降解的活性   总被引:7,自引:0,他引:7  
以钛酸四丁酯和氯金酸为原料,通过溶胶凝胶法制备了Au掺杂的纳米TiO2光催化剂粉体,并用 XRD, BET,XPS和固体紫外可见吸收光谱等技术对其晶相结构,比表面积,表面组成及紫外可见光响应范围进行了表征,对其光催化降解非离子表面活性剂壬基酚聚氧乙烯醚(NPE-10)的活性进行了考察. 结果表明,掺杂的Au在纳米TiO2粉体材料中可能以两种形态存在,即以Au3+离子形式替代Ti4+进入TiO2晶格和以Au原子态形式暴露于粉体表面.前者使TiO2在480~650 nm出现了更强的光吸收,并大大地增强了粉体表面对氧物种的吸附;后者中处于表面原子态的Au又会成为光生电子的受体,有效地避免了光生电子空穴对的复合. 通过对掺杂量及处理温度的优化,在nAu3+/nTi4+=0.005, 500 ℃煅烧的条件下可以制得具有较高的光催化活性的Au/TiO2粉体. 对NPE-10的光催化氧化试验显示,日光照射4小时后降解效率可以达到91.8%;而用未改性的纳米TiO2,在同样条件下,NPE-10的光催化降解效率仅能达到50.2%,商品Degussa P-25也只能达到66%.  相似文献   

17.
The structural and catalytic properties of SiO2- and TiO2 -supported Pt-Au bimetallic catalysts prepared by coimpregnation were compared with those of samples of similar composition synthesized from a Pt2Au4(C{triple bond}CBut)8 cluster precursor. The smallest metal particles were formed when the bimetallic cluster was used as a precursor and TiO2 as the support. FTIR data indicate that highly dispersed Au crystallites in these samples, presumably located in close proximity to Pt, are capable of linearly coordinating CO molecules with a characteristic vibration observed at 2111 cm(-1). The cluster-derived Pt2Au4/TiO2 samples were the only ones exhibiting low-temperature CO oxidation activity, indicating that both the high dispersion of Au and the nature of the support are important factors affecting the catalytic activity for this system.  相似文献   

18.
Organic-metal hybrid nanowires were synthesized by cooperative self-organization of the one-dimensional stacking of tetrathiafulvalene (TTF) via charge-transfer interaction with metallic gold originating from the redox reaction between TTF and gold ions. The nanowires can be easily obtained as purple precipitates just by mixing TTF and HAuCl4 in a CH3CN solution at room temperature. The feed molar ratio of TTF to HAuCl4 was 4.4. The average diameter and length of the observed nanowires were 90 +/- 36 nm and 15 +/- 3 microm, respectively. The formation was facilitated by the arrangement of the neutral and oxidized TTF along the one direction in a mix-valence state, which was confirmed by a broad absorption that appeared in the region of 2000 nm and the composition of the nanowires of [(TTFCl(0.78))Au(0.12)].  相似文献   

19.
Chemisorbed acetate species derived from the adsorption of acetic acid have been oxidized on a nano-Au/TiO(2) (~3 nm diameter Au) catalyst at 400 K in the presence of O(2)(g). It was found that partial oxidation occurs to produce gold ketenylidene species, Au(2)═C═C═O. The reactive acetate intermediates are bound at the TiO(2) perimeter sites of the supported Au/TiO(2) catalyst. The ketenylidene species is identified by its measured characteristic stretching frequency ν(CO) = 2040 cm(-1) and by (13)C and (18)O isotopic substitution comparing to calculated frequencies found from density functional theory. The involvement of dual catalytic Ti(4+) and Au perimeter sites is postulated on the basis of the absence of reaction on a similar nano-Au/SiO(2) catalyst. This observation excludes low coordination number Au sites as being active alone in the reaction. Upon raising the temperature to 473 K, the production of CO(2) and H(2)O is observed as both acetate and ketenylidene species are further oxidized by O(2)(g). The results show that partial oxidation of adsorbed acetate to adsorbed ketenylidyne can be cleanly carried out over Au/TiO(2) catalysts by control of temperature.  相似文献   

20.
We previously reported that a porphyrin-cored tetradentate passivant, which has two disulfide straps over one face of the porphyrin plane, can produce monolayer-protected gold nanoparticles, 2-4 nm in size, by the one-pot reduction of HAuCl(4) in DMF. The resulting nanoparticles are smaller than those prepared using the same S/Au molar ratio of a monodentate passivant. To examine the formation mechanism of small gold nanoparticles, the formation of gold nanoparticles in the presence of porphyrin-cored tetradentate passivants or a structurally related monodentate passivant was studied by time-resolved quick X-ray absorption fine structure spectroscopy. The results demonstrated that all of Au ions in solution are reduced to compose small Au clusters, i.e. nuclei, just after the NaBH(4) reduction of HAuCl(4) in both cases, but their size varied with the initial S/Au molar ratios and structure of the passivants. Thus, the size of Au nuclei was kinetically controlled by the passivants. Interestingly, the porphyrin-cored tetradentate passivant could stabilize smaller gold nanoparticles, 2-4 nm in size, but it was less efficient in trapping the Au nuclei formed at a very early stage, in comparison to the monodentate passivant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号